Future generations of cathode materials: an automotive industry perspective

Future generations of electrified vehicles require driving ranges of at least 300 miles to successfully penetrate the mass consumer market. A significant improvement in the energy density of lithium batteries is mandatory, maintaining at the same time similar, or improved, rate capability, lifetime, cost, and safety. Several new cathode materials have been claimed over the last decade to allow for this energy improvement. The possibility that some of them will find application in the future automotive batteries is critically evaluated here by first considering their theoretical and experimentally demonstrated energy densities at the material level. For selected candidates, the energy density at the automotive battery cell level for electric vehicle applications is calculated using an in-house developed software. For the selected cathodes, literature results concerning their power capability and lifetime are also discussed with reference to the automotive targets.

[1]  Jong-Wan Park,et al.  Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery , 2004 .

[2]  Itaru Honma,et al.  Controlled synthesis of nanocrystalline Li2MnSiO4 particles for high capacity cathode application in lithium-ion batteries. , 2012, Chemical communications.

[3]  Ying Wang,et al.  Electrochemical Reactivity Mechanism of Ni3 N with Lithium , 2004 .

[4]  Doron Aurbach,et al.  Structural and Electrochemical Evidence of Layered to Spinel Phase Transformation of Li and Mn Rich Layered Cathode Materials of the Formulae xLi[Li1/3Mn2/3]O2.(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon Cycling , 2014 .

[5]  Robert Kostecki,et al.  The mechanism of HF formation in LiPF6-based organic carbonate electrolytes , 2012 .

[6]  Yong Yang,et al.  Synthesis and Characterization of Li2Mn x Fe1 − x SiO4 as a Cathode Material for Lithium-Ion Batteries , 2006 .

[7]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[8]  Wei Zhang,et al.  Synthesis and characterization of in situ Fe2O3-coated FeF3 cathode materials for rechargeable lithium batteries , 2012 .

[9]  M. Whittingham,et al.  Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries , 2011 .

[10]  Yong Yang,et al.  Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries , 2007 .

[11]  Jean-Marie Tarascon,et al.  Sulfate-Based Polyanionic Compounds for Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects , 2014 .

[12]  Arumugam Manthiram,et al.  A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries , 2014 .

[13]  Yu Wang,et al.  Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries , 2013 .

[14]  Ying Li,et al.  Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries , 2012 .

[15]  Chil-Hoon Doh,et al.  Electrochemical Properties and Thermal Stability of LiNi 0.8 Co 0.15 Al 0.05 O 2 -LiFePO 4 Mixed Cathode Materials for Lithium Secondary Batteries , 2012 .

[16]  Jaephil Cho,et al.  High Performance LiCoO2 Cathode Materials at 60 ° C for Lithium Secondary Batteries Prepared by the Facile Nanoscale Dry-Coating Method , 2010 .

[17]  Jeremy Barker,et al.  Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F , 2005 .

[18]  Ajay K. Mishra,et al.  Modified synthesis of [Fe/LiF/C] nanocomposite, and its application as conversion cathode material i , 2011 .

[19]  Jihyun Hong,et al.  Energy storage in composites of a redox couple host and a lithium ion host , 2012 .

[20]  Zhenguo Yang,et al.  LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. , 2010, Nano letters.

[21]  Jagjit Nanda,et al.  Electrode architectures for high capacity multivalent conversion compounds: iron (II and III) fluoride , 2014 .

[22]  Jun-ichi Yamaki,et al.  Thermal stability of FeF3 cathode for Li-ion batteries , 2010 .

[23]  杨勇,et al.  Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries , 2006 .

[24]  Haidong Liu,et al.  The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe, Co, Gd) , 2011 .

[25]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[26]  Peter Y. Zavalij,et al.  Reactivity, stability and electrochemical behavior of lithium iron phosphates , 2002 .

[27]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[28]  Ying Shirley Meng,et al.  Electrochemical Properties of Nonstoichiometric LiNi0.5Mn1.5O4 − δ Thin-Film Electrodes Prepared by Pulsed Laser Deposition , 2007 .

[29]  Martin Winter,et al.  What Are Batteries, Fuel Cells, and Supercapacitors? (Chem. Rev. 2003, 104, 4245−4269. Published on the Web 09/28/2004.) , 2005 .

[30]  Jeff Tollefson,et al.  Car industry: Charging up the future , 2008, Nature.

[31]  Ivo Teerlinck,et al.  Enhanced Electrochemical Performance of Mesoparticulate LiMnPO4 for Lithium Ion Batteries , 2006 .

[32]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[33]  Masao Yonemura,et al.  Synthesis, Crystal Structure, and Electrode Characteristics of LiMnPO4(OH) Cathode for Lithium Batteries. , 2012 .

[34]  Martin Winter,et al.  Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica , 2012 .

[35]  Xiangyun Song,et al.  A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes , 2012 .

[36]  Yanhui Xu,et al.  Lithium ion intercalation mechanism for LiCoPO4 electrode , 2013 .

[37]  A. Mauger,et al.  Review of 5-V electrodes for Li-ion batteries: status and trends , 2013, Ionics.

[38]  Doron Aurbach,et al.  Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[39]  Paul Bowen,et al.  Effect of particle size on LiMnPO4 cathodes , 2007 .

[40]  K. Hariharan,et al.  Lithium iron(II) pyrophosphate as a cathode material: structure and transport studies , 2014 .

[41]  Emmanuelle Suard,et al.  The structure of tavorite LiFePO4(OH) from diffraction and GGA + U studies and its preliminary electrochemical characterization. , 2010, Dalton transactions.

[42]  Joachim Maier,et al.  Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries , 2003 .

[43]  Martin Winter,et al.  Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries , 2013 .

[44]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[45]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[46]  Haegyeom Kim,et al.  Neutron and X-ray Diffraction Study of Pyrophosphate-Based Li2–xMP2O7 (M = Fe, Co) for Lithium Rechargeable Battery Electrodes , 2011 .

[47]  Karim Zaghib,et al.  Spinel materials for high-voltage cathodes in Li-ion batteries , 2014 .

[48]  Glenn G. Amatucci,et al.  Effect of Vertically Structured Porosity on Electrochemical Performance of FeF2 Films for Lithium Batteries , 2014 .

[49]  Jaephil Cho,et al.  A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. , 2003, Angewandte Chemie.

[50]  Wei Liu,et al.  Mild and cost-effective synthesis of iron fluoride-graphene nanocomposites for high-rate Li-ion battery cathodes , 2013 .

[51]  Martin Winter,et al.  How Do Reactions at the Anode/Electrolyte Interface Determine the Cathode Performance in Lithium-Ion Batteries? , 2013 .

[52]  Kyung Yoon Chung,et al.  Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy. , 2014, ACS applied materials & interfaces.

[53]  Ying Shirley Meng,et al.  Conversion mechanism of nickel fluoride and NiO-doped nickel fluoride in Li ion batteries , 2012 .

[54]  S. Ye,et al.  Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries , 2013 .

[55]  Siqi Shi,et al.  First-principles studies of cation-doped spinel LiMn2O4 for lithium ion batteries , 2003 .

[56]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[57]  Neeraj Sharma,et al.  Li2MnSiO4 cathodes modified by phosphorous substitution and the structural consequences , 2014 .

[58]  Michael Thackeray,et al.  Lithium-ion batteries: An unexpected conductor. , 2002, Nature materials.

[59]  John T. Vaughey,et al.  The Effects of Acid Treatment on the Electrochemical Properties of 0.5 Li2MnO3 ∙ 0.5 LiNi0.44Co0.25Mn0.31O2 Electrodes in Lithium Cells , 2006 .

[60]  Robert Kostecki,et al.  Distinct Solid‐Electrolyte‐Interphases on Sn (100) and (001) Electrodes Studied by Soft X‐Ray Spectroscopy , 2014 .

[61]  Robert Dominko,et al.  Preparation, structure and electrochemistry of LiFeBO3: a cathode material for Li-ion batteries , 2014 .

[62]  Guoying Chen Thermal Instability of Olivine-Type LiMnP04 Cathodes , 2010 .

[63]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[64]  Myung-Hyun Ryou,et al.  Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries , 2013 .

[65]  Vanchiappan Aravindan,et al.  Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO4 , 2012 .

[66]  Bruno Scrosati,et al.  The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li‐Enriched Nickel‐Manganese Oxide Electrodes for Li‐Ion Batteries , 2012, Advanced materials.

[67]  Yaser Abu-Lebdeh,et al.  Beyond Intercalation: Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion Batteries , 2012 .

[68]  M. Fichtner,et al.  A ferrocene-based carbon–iron lithium fluoride nanocomposite as a stable electrode material in lithium batteries , 2010 .

[69]  Jie Zhang,et al.  A study of novel anode material CoS2 for lithium ion battery , 2005 .

[70]  Jean-Marie Tarascon,et al.  One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders , 2004 .

[71]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[72]  Palani Balaya,et al.  Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping. , 2013, Physical chemistry chemical physics : PCCP.

[73]  Jeremy Barker,et al.  LiVPO4F: A new active material for safe lithium-ion batteries , 2006 .

[74]  Dirk Becker,et al.  Investigation of graphitic carbon foams/LiNiPO4 composites , 2012, Journal of Solid State Electrochemistry.

[75]  Lisa C. Klein,et al.  Investigation of the Lithiation and Delithiation Conversion Mechanisms of Bismuth Fluoride Nanocomposites , 2006 .

[76]  Daniel Sharon,et al.  On the challenge of developing advanced technologies for electrochemical energy storage and conversion , 2014 .

[77]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[78]  Wei Li,et al.  Factors influencing the electrochemical properties of high-voltage spinel cathodes: Relative impact of morphology and cation ordering , 2013 .

[79]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[80]  Ying Wang,et al.  Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode , 2005 .

[81]  Liangliang Cheng,et al.  One step solid state synthesis of FeF3·0.33H2O/C nano-composite as cathode material for lithium-ion batteries , 2014 .

[82]  Ting Li,et al.  Transition-metal chlorides as conversion cathode materials for Li-ion batteries , 2012 .

[83]  Peter Y. Zavalij,et al.  The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications , 2008 .

[84]  Li Jiang,et al.  Electrochemical impedance spectroscopy investigation of the FeF3/C cathode for lithium-ion batteries , 2012 .

[85]  Noboru Oyama,et al.  MEM Charge Density Study of Olivine LiMPO4 and MPO4 (M = Mn, Fe) as Cathode Materials for Lithium-Ion Batteries , 2013 .

[86]  Karim Zaghib,et al.  Comparative Issues of Cathode Materials for Li-Ion Batteries , 2014 .

[87]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[88]  M. M. Thackeray Lithium-ion batteries : an unexpected advance. , 2002 .

[89]  Yair Ein-Eli,et al.  Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries , 2012 .

[90]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[91]  Gerbrand Ceder,et al.  Lithium-intercalation oxides for rechargeable batteries , 1998 .

[92]  Yuto Yamakawa,et al.  Effect of heat-treatment process on FeF3 nanocomposite electrodes for rechargeable Li batteries , 2011 .

[93]  Yun Chan Kang,et al.  Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries , 2014 .

[94]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[95]  Glenn G. Amatucci,et al.  Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites , 2010 .

[96]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[97]  Jaephil Cho,et al.  Significant Improvement of LiNi0.8Co0.15Al0.05O2 Cathodes at 60 ° C by SiO2 Dry Coating for Li-Ion Batteries , 2010 .

[98]  Kyung Yoon Chung,et al.  Investigation of Changes in the Surface Structure of LixNi0.8Co0.15Al0.05O2 Cathode Materials Induced by the Initial Charge , 2014 .

[99]  Lisa C. Klein,et al.  Electrochemistry of Cu3N with Lithium: A Complex System with Parallel Processes , 2003 .

[100]  Robert Kostecki,et al.  Optimization of Carbon Coatings on LiFePO4 , 2006 .

[101]  Ping Liu,et al.  Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material , 2011 .

[102]  Jun-ichi Yamaki,et al.  Fluoride phosphate li2copo4f as a high-voltage cathode in li-ion batteries , 2005 .

[103]  Jason Graetz,et al.  Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3 , 2012 .

[104]  Arumugam Manthiram,et al.  Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries , 2010 .

[105]  Yunfeng Song,et al.  Effects of amorphous AlPO4 coating on the electrochemical performance of BiF3 cathode materials for lithium-ion batteries , 2012 .

[106]  Yuki Yamada,et al.  Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries - a first principle computational study. , 2012, Physical chemistry chemical physics : PCCP.

[107]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[108]  Glenn G. Amatucci,et al.  Fluoride based electrode materials for advanced energy storage devices , 2007 .

[109]  Neeraj Sharma,et al.  Synthesis, structure, and electrochemical performance of magnesium-substituted lithium manganese orthosilicate cathode materials for lithium-ion batteries , 2012 .

[110]  Li Liu,et al.  Improved electrochemical properties of BiF3/C cathode via adding amorphous AlPO4 for lithium-ion batteries , 2013 .

[111]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[112]  Jean-Marie Tarascon,et al.  Structure and electrochemical properties of novel mixed Li(Fe1−xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis , 2010 .

[113]  Qingxin Chu,et al.  Reduced graphene oxide decorated with FeF3 nanoparticles: Facile synthesis and application as a high capacity cathode material for rechargeable lithium batteries , 2013 .

[114]  Linda F. Nazar,et al.  Tavorite Lithium Iron Fluorophosphate Cathode Materials: Phase Transition and Electrochemistry of LiFePO4F-Li2FePO4F , 2010 .

[115]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[116]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[117]  J. Tarascon,et al.  A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. , 2011, Nature materials.

[118]  J. Dahn,et al.  Reducing Carbon in LiFePO4 / C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density , 2002 .

[119]  Robert Dominko,et al.  Impact of synthesis conditions on the structure and performance of Li2FeSiO4 , 2008 .

[120]  Robert Dominko,et al.  Beyond One-Electron Reaction in Li Cathode Materials: Designing Li2MnxFe1-xSiO4 , 2007 .

[121]  Yuichi Sato,et al.  Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing , 2007 .

[122]  Robert Dominko,et al.  Li2MSiO4 (M = Fe and/or Mn) cathode materials , 2008 .

[123]  Yun-Sung Lee,et al.  LiMnPO4 - A next generation cathode material for lithium-ion batteries , 2013 .

[124]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[125]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[126]  Junfeng Ding,et al.  Investigation of the conversion mechanism of nanosized CoF2 , 2013 .

[127]  Ning Zhang,et al.  Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries , 2008 .

[128]  Ying Wang,et al.  Electrochemical Reactions of Lithium with Transition Metal Nitride Electrodes , 2004 .

[129]  Justin D. Holmes,et al.  Supercritical-fluid synthesis of FeF2 and CoF2 Li-ion conversion materials , 2013 .

[130]  Gustaaf Van Tendeloo,et al.  Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates: LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[131]  Sylvio Indris,et al.  Structural Evolution of Li2Fe1-yMnySiO4 (y = 0, 0.2, 0.5, 1) Cathode Materials for Li-Ion Batteries upon Electrochemical Cycling , 2013 .

[132]  Shi-Gang Sun,et al.  An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4 , 2010 .

[133]  Chong Seung Yoon,et al.  Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating , 2013 .

[134]  Li Liu,et al.  Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries , 2014 .

[135]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[136]  Tsutomu Ohzuku,et al.  Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries , 1999 .

[137]  Anubhav Jain,et al.  Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing , 2011 .

[138]  Min Gyu Kim,et al.  Washing Effect of a LiNi0.83Co0.15Al0.02O2 Cathode in Water , 2006 .

[139]  Christian Masquelier,et al.  Lithium Insertion or Extraction from/into Tavorite-Type LiVPO4F: An In Situ X-ray Diffraction Study , 2012 .

[140]  Peng Chen,et al.  In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries , 2012 .

[141]  Yun-Sung Lee,et al.  Adipic acid assisted sol–gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties , 2010 .

[142]  Matteo Cococcioni,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[143]  John B. Goodenough,et al.  A new promising sol-gel synthesis of phospho-olivines as environmentally friendly cathode materials for Li-ion cells , 2004 .

[144]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[145]  Song Jin,et al.  High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. , 2014, Nanoscale.

[146]  Marie-Liesse Doublet,et al.  Electrochemical Behaviors of Binary and Ternary Manganese Phosphides , 2005 .

[147]  Craig A. J. Fisher,et al.  Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior , 2008 .

[148]  Guoying Chen,et al.  The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials , 2013 .

[149]  Robert Dominko,et al.  Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials , 2006 .

[150]  Xin Li,et al.  Synthesis and Lithiation Mechanisms of Dirutile and Rutile LiMnF4 : Two New Conversion Cathode Materials , 2013 .

[151]  Wei Liu,et al.  Introduction to Hybrid Vehicle System Modeling and Control: Liu/Introduction to Hybrid Vehicle System Modeling and Control , 2013 .

[152]  Isaac Abrahams,et al.  Structure of lithium nickel phosphate , 1993 .

[153]  Ki-Soo Lee,et al.  Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive , 2009 .

[154]  Dong-Hwa Seo,et al.  First-principles study on lithium metal borate cathodes for lithium rechargeable batteries , 2011 .

[155]  Jaephil Cho,et al.  Who will drive electric vehicles, olivine or spinel? , 2011 .

[156]  Yukinori Koyama,et al.  Lithium Iron Borates as High‐Capacity Battery Electrodes , 2010, Advanced materials.

[157]  Horst Hahn,et al.  Synthesis of [Co/LiF/C] nanocomposite and its application as cathode in lithium-ion batteries , 2012 .

[158]  Jeremy Barker,et al.  Electrochemical Insertion Properties of the Novel Lithium Vanadium Fluorophosphate, LiVPO4 F , 2003 .

[159]  Hiroshi Nakamura,et al.  Electrochemical Activities in Li2MnO3 , 2009 .

[160]  Jian Xia,et al.  Facile synthesis of FeS2 nanocrystals and their magnetic and electrochemical properties , 2013 .

[161]  Li Liu,et al.  Excellent cycle performance of Co-doped FeF3/C nanocomposite cathode material for lithium-ion batteries , 2012 .

[162]  Dong-Hwa Seo,et al.  Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries , 2010, Advanced materials.

[163]  Robert Dominko,et al.  Silicate cathodes for lithium batteries: alternatives to phosphates? , 2011 .

[164]  Wei Li,et al.  High-voltage spinel cathodes for lithium-ion batteries: controlling the growth of preferred crystallographic planes through cation doping , 2013 .

[165]  Dominique Guyomard,et al.  LiMBO3 (M=Mn, Fe, Co):: synthesis, crystal structure and lithium deinsertion/insertion properties , 2001 .

[166]  Jean-Marie Tarascon,et al.  On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) , 2006 .

[167]  Robert Kostecki,et al.  In situ AFM studies of SEI formation at a Sn electrode , 2009 .

[168]  Jiajun Li,et al.  Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries , 2013 .

[169]  Marnix Wagemaker,et al.  Nanostructured TiO2 anatase micropatterned three-dimensional electrodes for high-performance Li-ion batteries , 2013 .

[170]  Jean-Marie Tarascon,et al.  Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M = Fe , Mn) Electrode Materials , 2005 .

[171]  Ilias Belharouak,et al.  Structural and electrochemical characterization of Li{sub 2}MnSiO{sub 4} cathode material. , 2009 .

[172]  Jiaxin Li,et al.  Long cycling life of Li2MnSiO4 lithium battery cathodes under the double protection from carbon coating and graphene network , 2013 .

[173]  Seeram Ramakrishna,et al.  Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries. , 2015, Chemical communications.

[174]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[175]  Bin Qiu,et al.  In situ synthesis of CoS2/RGO nanocomposites with enhanced electrode performance for lithium-ion batteries , 2013 .

[176]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[177]  Anubhav Jain,et al.  Designing Multielectron Lithium-Ion Phosphate Cathodes by Mixing Transition Metals , 2013 .

[178]  B. V. R. Chowdari,et al.  Long-term cycling studies on 4 V-cathode, lithium vanadium fluorophosphate , 2010 .

[179]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[180]  Wei Li,et al.  Octahedral and truncated high-voltage spinel cathodes: the role of morphology and surface planes in electrochemical properties , 2013 .

[181]  Yong Yang,et al.  Recent advances in the research of polyanion-type cathode materials for Li-ion batteries , 2011 .

[182]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[183]  Itaru Honma,et al.  Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. , 2012, Nano letters.

[184]  Lijun Wu,et al.  Combining In Situ Synchrotron X‐Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium‐Ion Batteries , 2013 .