Effects of soft water attack on Portland and natural zeolite blended cements

The durability of concrete infrastructure is related to the properties of the applied concrete and the effects of the aggressive external environment on it. When concrete is directly exposed to soft water, the leaching of calcium ions from hardened cement or cement-based pastes occurs, causing reduction in strength and further deterioration of the concrete structure. This paper presents the experimental results of soft water attack effects on phase composition and compressive strength of blended cement pastes, when cement is replaced with 0%, 10%, 20% and 30% of natural zeolite. In order to simulate soft water attack in laboratory conditions, paste specimens were exposed to leaching in deionised water up to 180 days. The evaluation of the changes in phase composition (ettringite, portlandite, calcium silicate hydrate gel) due to calcium ion leaching was made based on X-ray diffraction analysis, Fourier transform infrared spectroscopy and paste compressive strength tests. The presence of portlandite and ettringite after 180 days of exposure to deionised water indicates that leaching did not influence the stability of the hydration products in blended cement pastes. Moreover, blended cement paste with 10% of natural zeolite had a higher compressive strength than the reference one.