5 – Fuzzy Measures of Molecular Shape and Size

This chapter provides the basic concepts of fuzzy sets. Fuzzy set methods have been developed for a variety of applications, initially mostly in the engineering and technology; many applications in the natural sciences quickly followed. The Heisenberg relationship and many other aspects of quantum mechanics can be interpreted in terms of fuzzy sets. The theory of fuzzy sets has experienced an extremely rapid development; more recent introduction to the fundamentals and some of the more advanced topics of fuzzy set theory have been given from the dual perspectives of systematic theory and applications. The chapter reviews the specific notations and the fuzzy set concepts that are most relevant to the molecular shape problem, followed by a simple proof for a special fuzzy set generalization of the Hausdorff distance, motivated by the quantum chemical properties of fuzzy electronic densities of molecules. All aspects of molecular shape and size are fully reflected by the molecular electron density distribution. A molecule is an arrangement of atomic nuclei surrounded by a fuzzy electron density cloud. Fuzzy electron density modeling of large molecules has been improved to a level which is comparable to that for small molecules. For the description of shape differences between fuzzy objects—such as molecular electron density clouds—it is useful to generalize the Hausdorff metric for fuzzy sets.

[1]  P. Pulay,et al.  Direct Use of the Gradient for Investigating Molecular Energy Surfaces , 1977 .

[2]  S. T. Ali,et al.  Systems of imprimitivity and representations of quantum mechanics on fuzzy phase spaces , 1977 .

[3]  Paul G. Mezey,et al.  Molecular Similarity Measures for Assessing Reactivity , 1996 .

[4]  Paul G. Mezey,et al.  Shape-similarity measures for molecular bodies: A 3D topological approach to quantitative shape-activity relations , 1992, J. Chem. Inf. Comput. Sci..

[5]  A. Buda,et al.  A Hausdorff chirality measure , 1992 .

[6]  William L. Clinton,et al.  Direct Determination of Pure-State Density Matrices. V. Constrained Eigenvalue Problems , 1969 .

[7]  Paul G. Mezey,et al.  Ab Initio Quality Electron Densities for Proteins: A MEDLA Approach , 1994 .

[8]  Paul G. Mezey,et al.  The shape of molecular charge distributions: Group theory without symmetry , 1987 .

[9]  Paul G. Mezey,et al.  Functional Groups in Quantum Chemistry , 1996 .

[10]  Pietro Poggi-Corradini,et al.  Shape space of achiral simplexes , 1993 .

[11]  Per-Olov Löwdin,et al.  On the Nonorthogonality Problem , 1970 .

[12]  P. Pulay Ab initio calculation of force constants and equilibrium geometries , 1971 .

[13]  Shmuel Peleg,et al.  Continuous symmetry measures , 1992 .

[14]  K. Mislow,et al.  MOLECULAR DISSYMMETRY AND OPTICAL INACTIVITY , 1955 .

[15]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[16]  P. Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in poly-atomic molecules. II. Force constants of water , 1970 .

[17]  Paul G. Mezey,et al.  Group theory of shapes of asymmetric biomolecules , 1987 .

[18]  A. Buda,et al.  Desymmetrization and degree of chirality , 1991 .

[19]  P. Mezey The symmetry of electronic energy level sets and total energy relations in the abstract nuclear charge space , 1982 .

[20]  Paul G. Mezey,et al.  Toward similarity measures for macromolecular bodies: Medla test calculations for substituted benzene systems , 1995, J. Comput. Chem..

[21]  L. Zülicke,et al.  Zur Bereehnung des Behinderungspotentials der inneren Rotation von Wasserstoffperoxid , 1966 .

[22]  Robert K. Zimmerman,et al.  One‐electron properties as variational parameters , 1976 .

[23]  R. Parr Theorem Governing Changes in Molecular Conformation , 1964 .

[24]  P. Mezey,et al.  Methods of molecular shape similarity and topological shape design , 1995 .

[25]  E. Prugovec̆ki Localizability of relativistic particles in fuzzy phase space , 1976 .

[26]  Paul G. Mezey,et al.  The concept of ‘syntopy’ , 1990 .

[27]  J. Goodisman Calculation of the Barrier to Internal Rotation of Ethane , 1966 .

[28]  A. C. Hurley The electrostatic calculation of molecular energies - I. Methods of calculating molecular energies , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  Shmuel Peleg,et al.  Continuous Symmetry Measures. 2. Symmetry Groups and the Tetrahedron , 1993 .

[30]  Massa,et al.  Wave functions derived by quantum modeling of the electron density from coherent x-ray diffraction: Beryllium metal. , 1985, Physical review letters.

[31]  R. Feynman Forces in Molecules , 1939 .

[32]  Thomas Auf der Heyde,et al.  On Quantifying Chirality , 1992 .

[33]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[34]  Topology of Molecular Shape and Chirality , 1989 .

[35]  J. Goodisman Barrier to Internal Rotation in Ethane Using the Hellman—Feynman Theorem , 1966 .

[36]  P. Pulay,et al.  Ab initio calculation of the force field of ethylene , 1971 .

[37]  Paul G. Mezey,et al.  Molecular electron density lego approach to molecule building , 1993 .

[38]  L. Schulman,et al.  Chiral interaction, magnitude of the effects and application to natural selection of L-enantiomer , 1985 .

[39]  P. Mezey,et al.  The fundamental syntopy of quasi‐symmetric systems: Geometric criteria and the underlying syntopy of a nuclear configuration space , 1993 .

[40]  Kiyoaki Tanaka,et al.  X‐ray analysis of wavefunctions by the least‐squares method incorporating orthonormality. I. General formalism , 1988 .

[41]  A. Buda,et al.  Geometric chirality products , 1991 .

[42]  F. L. Pilar,et al.  Elementary Quantum Chemistry , 1968 .

[43]  Paul G. Mezey,et al.  QUANTUM CHEMICAL SHAPE : NEW DENSITY DOMAIN RELATIONS FOR THE TOPOLOGY OF MOLECULAR BODIES, FUNCTIONAL GROUPS, AND CHEMICAL BONDING , 1994 .

[44]  Paul G. Mezey,et al.  A new computational microscope for molecules: High resolution MEDLA images of taxol and HIV-1 protease, using additive electron density fragmentation principles and fuzzy set methods , 1995 .

[45]  L. Massa,et al.  Numerical Applications of a Quantum Model for the Coherent Diffraction Experiment , 1982 .

[46]  Paul G. Mezey,et al.  Macromolecular density matrices and electron densities with adjustable nuclear geometries , 1995 .

[47]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[48]  C. Trindle,et al.  Integral Hellmann-Feynman computations on H3ABHn—H2ABHn+1 rearrangements , 1976 .

[49]  Hans Bandemer,et al.  Fuzzy Data Analysis , 1992 .

[50]  G. Gilat Chiral interactions in biomolecules , 1985 .

[51]  Lou Massa,et al.  The cusp condition: Constraint on the electron density matrix , 1972 .

[52]  C. Frishberg Slater determinant from atomic form factors , 1986 .

[53]  Douglas J. Klein,et al.  Similarity and dissimilarity in posets , 1995 .

[54]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations , 1955 .

[55]  T. EpsteinS 制限とヘルマン・ファインマンの定理 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1980 .

[56]  A. C. Hurley,et al.  The electrostatic calculation of molecular energies - II. Approximate wave functions and the electrostatic method , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[58]  William L. Clinton,et al.  DIRECT DETERMINATION OF PURE-STATE DENSITY MATRICES. II. CONSTRUCTION OF CONSTRAINED IDEMPOTENT ONE-BODY DENSITIES. , 1969 .

[59]  Paul G. Mezey,et al.  Local-Shape Analysis of Macromolecular Electron Densities , 1996 .

[60]  Lou Massa,et al.  Idempotent density matrices for correlated systems from x-ray-diffraction structure factors , 1981 .

[61]  Paul G. Mezey,et al.  Realistic, detailed images of proteins and tertiary structure elements: ab initio quality electron density calculations for bovine insulin , 1994 .

[62]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[63]  V. Tsirelson,et al.  The Crystal Electron Energy and Compton Profile Calculations from X‐Ray Diffraction Data , 1989 .

[64]  Paul G. Mezey,et al.  Shape in Chemistry: An Introduction to Molecular Shape and Topology , 1993 .

[65]  István Hargittai,et al.  Symmetry through the eyes of a chemist , 1986 .

[66]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[67]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[68]  P. Mezey From Geometrical Molecules to Topological Molecules: A Quantum Mechanical View , 1988 .

[69]  K. Chou,et al.  Predicting protein structural classes from amino acid composition: application of fuzzy clustering. , 1995, Protein engineering.

[70]  A I Kitaigorodskii,et al.  Organic chemical crystallography , 1961 .

[71]  S. Epstein Constraints and the Hellmann-Feynman theorem , 1980 .

[72]  J. Goodisman Postscript to ``Barrier to Internal Rotation in Ethane by Hellmann—Feynman Theorem'' , 1967 .

[73]  H. Doebner,et al.  On the equivalence of nonrelativistic quantum mechanics based upon sharp and fuzzy measurements , 1976 .

[74]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[75]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[76]  Paul G. Mezey,et al.  Similarity analysis in two and three dimensions using lattice animals and polycubes , 1992 .

[77]  Paul G. Mezey,et al.  Density Domain Bonding Topology and Molecular Similarity Measures , 1995 .

[78]  Paul G. Mezey,et al.  Application of the shape group method to conformational processes: Shape and conjugation changes in the conformers of 2‐phenyl pyrimidine , 1995, J. Comput. Chem..

[79]  Paul G. Mezey,et al.  Shape analysis of macromolecular electron densities , 1995 .

[80]  E. Prugovec̆ki,et al.  Fuzzy sets in the theory of measurement of incompatible observables , 1974 .

[81]  William L. Clinton,et al.  Determination of the Electron Density Matrix from X-Ray Diffraction Data , 1972 .

[82]  R. G. Woolley,et al.  Quantum theory and molecular structure , 1976 .

[83]  P. Mezey A global approach to molecular chirality , 1991 .

[84]  E. Prugovec̆ki,et al.  Measurement in quantum mechanics as a stochastic process on spaces of fuzzy events , 1975 .

[85]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[86]  Jerome Karle,et al.  Quantum crystallography and the use of kernel projector matrices , 1995 .

[87]  P. Pulay,et al.  Force Constants and Dipole Moment Derivatives of Ammonia from Hartree‐Fock Calculations , 1972 .

[88]  R. S. Mulliken Criteria for the Construction of Good Self‐Consistent‐Field Molecular Orbital Wave Functions, and the Significance of LCAO‐MO Population Analysis , 1962 .

[89]  P. Pulay An efficient ab initio gradient program , 1979 .

[90]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[91]  Paul G. Mezey,et al.  Potential Energy Hypersurfaces , 1987 .

[92]  Paul G. Mezey,et al.  Semisimilarity of molecular bodies: Scaling–nesting similarity measures , 1994 .

[93]  Topological Model of Reaction Mechanisms , 1985 .

[94]  D. Avnir,et al.  Continuous Symmetry Measures. 4. Chirality , 1995 .

[95]  D. Avnir,et al.  Measuring symmetry in structural chemistry , 1995 .

[96]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[97]  Paul G. Mezey,et al.  Shape Group Analysis of Molecular Similarity: Shape Similarity of Six-Membered Aromatic Ring Systems , 1995, J. Chem. Inf. Comput. Sci..

[98]  G. Gilat Chiral coefficient-a measure of the amount of structural chirality , 1989 .