EvoLaps: a web interface to visualize continuous phylogeographic reconstructions

Background Phylogeographic reconstructions serve as a basis to understand the spread and evolution of pathogens. Visualization of these reconstructions often lead to complex graphical representations which are difficult to interpret. Result We present EvoLaps, a user-friendly web interface to visualize phylogeographic reconstructions based on the analysis of latitude/longitude coordinates with various clustering levels. EvoLaps also produces transition diagrams that provide concise and easy to interpret summaries of phylogeographic reconstructions. Conclusion The main contribution of EvoLaps is to assemble known numerical and graphical methods/tools into a user-friendly interface dedicated to the visualization and edition of evolutionary scenarios based on continuous phylogeographic reconstructions. EvoLaps is freely usable at www.evolaps.org .

[1]  Philippe Lemey,et al.  Advances in Visualization Tools for Phylogenomic and Phylodynamic Studies of Viral Diseases , 2019, Front. Public Health.

[2]  Xin Jin,et al.  K-Means Clustering , 2010, Encyclopedia of Machine Learning.

[3]  Khalil Abudahab,et al.  Microreact: visualizing and sharing data for genomic epidemiology and phylogeography , 2016, Microbial genomics.

[4]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2019, PLoS computational biology.

[5]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[6]  Trevor Bedford,et al.  Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.

[7]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2018, bioRxiv.

[8]  Guy Baele,et al.  Host ecology determines the dispersal patterns of a plant virus , 2015, Virus evolution.

[9]  M. Suchard,et al.  Phylogeography takes a relaxed random walk in continuous space and time. , 2010, Molecular biology and evolution.

[10]  Rebecca Rose,et al.  SERAPHIM: studying environmental rasters and phylogenetically informed movements , 2016, Bioinform..

[11]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[12]  Sohta A. Ishikawa,et al.  A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios , 2019, Molecular biology and evolution.

[13]  M. Suchard,et al.  SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. , 2016, Molecular biology and evolution.

[14]  O. Gascuel,et al.  PastView: a user-friendly interface to explore ancestral scenarios , 2019, BMC Evolutionary Biology.

[15]  Olivier Gascuel,et al.  A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios , 2018, bioRxiv.

[16]  Olivier Gascuel,et al.  Searching for virus phylotypes , 2013, Bioinform..