Number-Theoretic Characterizations of Some Restricted Clifford+T Circuits

Kliuchnikov, Maslov, and Mosca proved in 2012 that a $2\times 2$ unitary matrix $V$ can be exactly represented by a single-qubit Clifford+$T$ circuit if and only if the entries of $V$ belong to the ring $\mathbb{Z}[1/\sqrt{2},i]$. Later that year, Giles and Selinger showed that the same restriction applies to matrices that can be exactly represented by a multi-qubit Clifford+$T$ circuit. These number-theoretic characterizations shed new light upon the structure of Clifford+$T$ circuits and led to remarkable developments in the field of quantum compiling. In the present paper, we provide number-theoretic characterizations for certain restricted Clifford+$T$ circuits by considering unitary matrices over subrings of $\mathbb{Z}[1/\sqrt{2},i]$. We focus on the subrings $\mathbb{Z}[1/2]$, $\mathbb{Z}[1/\sqrt{2}]$, $\mathbb{Z}[1/i\sqrt{2}]$, and $\mathbb{Z}[1/2,i]$, and we prove that unitary matrices with entries in these rings correspond to circuits over well-known universal gate sets. In each case, the desired gate set is obtained by extending the set of classical reversible gates $\{X, CX, CCX\}$ with an analogue of the Hadamard gate and an optional phase gate.

[1]  Vadym Kliuchnikov,et al.  A framework for exact synthesis , 2015, ArXiv.

[2]  P. Sarnak,et al.  Super-Golden-Gates for PU(2) , 2017, 1704.02106.

[3]  David McKinnon,et al.  Exact synthesis of single-qubit unitaries over Clifford-cyclotomic gate sets , 2015, 1501.04944.

[4]  Scott Aaronson,et al.  The Classification of Reversible Bit Operations , 2015, Electron. Colloquium Comput. Complex..

[5]  Jianxin Chen,et al.  A finite presentation of CNOT-dihedral operators , 2016, QPL.

[6]  Dmitri Maslov,et al.  Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits , 2012, IEEE Transactions on Computers.

[7]  Krysta Marie Svore,et al.  Efficient approximation of diagonal unitaries over the Clifford+T basis , 2014, Quantum Inf. Comput..

[8]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[9]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[10]  Luke Schaeffer,et al.  The Classification of Stabilizer Operations over Qubits , 2016, ArXiv.

[11]  Kazuyuki Amano,et al.  Representation of Quantum Circuits with Clifford and $\pi/8$ Gates , 2008, 0806.3834.

[12]  Neil J. Ross,et al.  Generators and Relations for the Group On(Z[1/2]) , 2021, QPL.

[13]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[14]  Giovanni De Micheli,et al.  SAT-based {CNOT, T} Quantum Circuit Synthesis , 2018, RC.

[15]  Simon Perdrix,et al.  Y-Calculus: A language for real Matrices derived from the ZX-Calculus , 2017, QPL.

[16]  S. E. M. Greylyn Generators and relations for the group $U_4(\mathbb{Z}[1/\sqrt{2},i])$ , 2014, 1408.6204.

[17]  Steven Vandenbrande,et al.  The Group of Dyadic Unitary Matrices , 2012, Open Syst. Inf. Dyn..

[18]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[19]  R. Tennant Algebra , 1941, Nature.

[20]  Y. Gurevich,et al.  Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.

[21]  Adam Bouland,et al.  Generation of universal linear optics by any beam splitter , 2013, 1310.6718.

[22]  Peter Selinger,et al.  Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.

[23]  Peter Selinger,et al.  Generators and relations for n-qubit Clifford operators , 2013, Log. Methods Comput. Sci..

[24]  Terry Rudolph,et al.  A 2 rebit gate universal for quantum computing , 2002 .

[25]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[26]  Martin Rötteler,et al.  Efficient synthesis of probabilistic quantum circuits with fallback , 2014, ArXiv.

[27]  Michele Mosca,et al.  T-Count Optimization and Reed–Muller Codes , 2016, IEEE Transactions on Information Theory.

[28]  Earl T. Campbell,et al.  An efficient quantum compiler that reduces T count , 2017, Quantum Science and Technology.

[29]  A. Kissinger,et al.  ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity , 2018, Electronic Proceedings in Theoretical Computer Science.

[30]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  Peter Selinger,et al.  Remarks on Matsumoto and Amano's normal form for single-qubit Clifford+T operators , 2013, ArXiv.

[32]  Joel J. Wallman,et al.  Real Randomized Benchmarking , 2018, Quantum.

[33]  Renaud Vilmart,et al.  A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+T, and Beyond , 2018, QPL.

[34]  Andrew M. Childs,et al.  Complexity of the XY antiferromagnet at fixed magnetization , 2016, Quantum Inf. Comput..

[35]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[36]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[37]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[38]  Earl T. Campbell,et al.  Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost , 2016, 1606.01904.

[39]  D. Aharonov A Simple Proof that Toffoli and Hadamard are Quantum Universal , 2003, quant-ph/0301040.