Multi-qubit correction for quantum annealers
暂无分享,去创建一个
[1] A. Ganti,et al. Family of [[6k,2k,2]] codes for practical and scalable adiabatic quantum computation , 2013, 1309.1674.
[2] M. W. Johnson,et al. Quantum annealing with manufactured spins , 2011, Nature.
[3] Daniel A. Lidar,et al. Adiabatic quantum optimization with the wrong Hamiltonian , 2013, 1310.0529.
[4] Daniel A. Lidar,et al. Mean Field Analysis of Quantum Annealing Correction. , 2015, Physical review letters.
[5] D. McMahon. Adiabatic Quantum Computation , 2008 .
[6] Ryan Babbush,et al. What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.
[7] Hristo Djidjev,et al. Optimizing the Spin Reversal Transform on the D-Wave 2000Q , 2019, 2019 IEEE International Conference on Rebooting Computing (ICRC).
[8] John Fulcher,et al. Computational Intelligence: An Introduction , 2008, Computational Intelligence: A Compendium.
[9] Cang Hui,et al. Non-equilibrium dynamics , 2017 .
[10] J. Straub,et al. Global energy minimum searches using an approximate solution of the imaginary time Schroedinger equation , 1993 .
[11] Daniel A. Lidar,et al. Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.
[12] Masayuki Ohzeki,et al. Quantum annealing: An introduction and new developments , 2010, 1006.1696.
[13] Dmitri V. Averin,et al. Decoherence induced deformation of the ground state in adiabatic quantum computation , 2012, Scientific Reports.
[14] Wojciech H. Zurek,et al. Defects in Quantum Computers , 2017, Scientific Reports.
[15] John E. Dorband,et al. Extending the D-Wave with support for Higher Precision Coefficients , 2018, ArXiv.
[16] Moinuddin K. Qureshi,et al. Mitigating Measurement Errors in Quantum Computers by Exploiting State-Dependent Bias , 2019, MICRO.
[17] Peter Norvig,et al. Artificial Intelligence: A Modern Approach , 1995 .
[18] Aidan Roy,et al. A practical heuristic for finding graph minors , 2014, ArXiv.
[19] Daniel A. Lidar,et al. Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.
[20] Daniel A. Lidar,et al. Quantum annealing correction for random Ising problems , 2014, 1408.4382.
[21] Rita Almeida Ribeiro,et al. Adaptive Imitation Scheme for Memetic Algorithms , 2011, DoCEIS.
[22] Andrew Lucas,et al. Ising formulations of many NP problems , 2013, Front. Physics.
[23] Andries P. Engelbrecht,et al. Computational Intelligence: An Introduction , 2002 .
[24] Tim Finin,et al. Reinforcement Quantum Annealing: A Hybrid Quantum Learning Automata , 2020, Scientific Reports.
[25] Firas Hamze,et al. Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.
[26] Gili Rosenberg,et al. Boosting quantum annealer performance via sample persistence , 2016, Quantum Inf. Process..
[27] Ari Mizel. Fault-tolerant, Universal Adiabatic Quantum Computation , 2014 .
[28] John E. Dorband,et al. A Method of Finding a Lower Energy Solution to a QUBO/Ising Objective Function , 2018, ArXiv.
[29] Ramin Ayanzadeh,et al. Leveraging Artificial Intelligence to Advance Problem-Solving with Quantum Annealers , 2020 .
[30] Ajinkya Borle,et al. On Post-Processing the Results of Quantum Optimizers , 2019, TPNC.
[31] Sebastian Deffner,et al. Quantum fluctuation theorem for error diagnostics in quantum annealers , 2018, Scientific Reports.
[32] Daniel A. Lidar,et al. Quantum annealing correction with minor embedding , 2015, 1507.02658.
[33] Daniel A. Lidar,et al. Adiabatic quantum computation , 2016, 1611.04471.
[34] Daniel A. Lidar,et al. Performance of two different quantum annealing correction codes , 2015, Quantum Inf. Process..
[35] John Preskill,et al. Quantum Computing in the NISQ era and beyond , 2018, Quantum.
[36] Adam D. Bookatz,et al. Error suppression in Hamiltonian-based quantum computation using energy penalties , 2014, 1407.1485.
[37] Andrew D. King,et al. Degeneracy, degree, and heavy tails in quantum annealing , 2015, 1512.07325.
[38] Timothy W. Finin,et al. Quantum Annealing Based Binary Compressive Sensing with Matrix Uncertainty , 2019, ArXiv.
[39] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[40] Andrew D. King,et al. Algorithm engineering for a quantum annealing platform , 2014, ArXiv.
[41] Daniel O'Malley,et al. Pre- and post-processing in quantum-computational hydrologic inverse analysis , 2019, ArXiv.
[42] Jérémie Roland,et al. Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.
[43] Daniel A. Lidar,et al. Nested quantum annealing correction , 2015, npj Quantum Information.
[44] J. Doll,et al. Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.
[45] B. Chakrabarti,et al. Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.
[46] Daniel A. Lidar,et al. Nested quantum annealing correction at finite temperature: p -spin models , 2018, Physical Review A.
[47] Hidetoshi Nishimori,et al. Exponential Enhancement of the Efficiency of Quantum Annealing by Non-Stoquastic Hamiltonians , 2016, Frontiers ICT.
[48] John Preskill,et al. Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..
[49] Kevin C. Young,et al. Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics , 2013, 1307.5892.
[50] Kevin C. Young,et al. Error suppression and error correction in adiabatic quantum computation I: techniques and challenges , 2013, 1307.5893.
[51] Itay Hen,et al. Practical engineering of hard spin-glass instances , 2016, 1605.03607.
[52] Catherine C. McGeoch,et al. Theory versus practice in annealing-based quantum computing , 2020, Theor. Comput. Sci..
[53] Tim Finin,et al. Quantum-Assisted Greedy Algorithms , 2019 .
[54] P. Shor,et al. Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.