Structure and Electrical Properties of Superionic Ceramics Based on Silver-Enriched (Cu0.25Ag0.75)7SiS5I Solid Solution

(Cu0.25Ag0.75)7SiS5I-based superionic ceramics were fabricated by using the micro- and nanopowders. The XRD technique and microstructural analysis are applied for the structural studies of powders and ceramic samples. The impedance measurements of ceramic samples are carried out in the frequency range from 10Hz to 2 × 106 Hz and temperature interval from 292 K to 383 K. The contributions of ionic and electronic conductivities into the total electrical conductivity are determined, and their temperature dependences are investigated. The influence of the size effect on ionic and electronic conductivities and their activation energies in (Cu0.25Ag0.75)7SiS5I-based ceramics is studied.

[1]  P. Annus,et al.  Electrochemical Impedance Spectroscopy , 2020 .

[2]  Hun‐Gi Jung,et al.  Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth. , 2020, Nano letters.

[3]  A. Pogodin,et al.  Electrical properties of copper- and silver-containing superionic (Cu1−xAgx)7SiS5I mixed crystals with argyrodite structure , 2020 .

[4]  L. Nazar,et al.  A New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. , 2019, Journal of the American Chemical Society.

[5]  M. Reece,et al.  Review of high entropy ceramics: design, synthesis, structure and properties , 2019, Journal of Materials Chemistry A.

[6]  G. Guan,et al.  Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review , 2019, Renewable and Sustainable Energy Reviews.

[7]  M. Wagemaker,et al.  A lithium argyrodite Li6PS5Cl0.5Br0.5 electrolyte with improved bulk and interfacial conductivity , 2019, Journal of Power Sources.

[8]  Jun Hee Lee,et al.  Solution-derived glass-ceramic NaI·Na3SbS4 superionic conductors for all-solid-state Na-ion batteries , 2018 .

[9]  T. Kovalchuk,et al.  Influence of Cu6PS5І superionic nanoparticles on the dielectric properties of 6СВ liquid crystal , 2017 .

[10]  Yong‐Sheng Hu,et al.  A ceramic/polymer composite solid electrolyte for sodium batteries , 2016 .

[11]  Enrique Romero-Cadaval,et al.  Power converter interfaces for electrochemical energy storage systems – A review , 2014 .

[12]  T. Šalkus,et al.  Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics , 2014 .

[13]  A. Hayashi,et al.  Sulfide Glass‐Ceramic Electrolytes for All‐Solid‐State Lithium and Sodium Batteries , 2014 .

[14]  C. Giacovazzo,et al.  EXPO2013: a kit of tools for phasing crystal structures from powder data , 2013 .

[15]  Xihong Hao,et al.  A review on the dielectric materials for high energy-storage application , 2013 .

[16]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[17]  Yan Yu,et al.  A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions , 2012 .

[18]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[19]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[20]  I. Studenyak,et al.  Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites , 2009 .

[21]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[22]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[23]  I. Studenyak,et al.  Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−yIy superionic conductors , 2006 .

[24]  T. Nilges,et al.  A structural differentiation of quaternary copper argyrodites: Structure — property relations of high temperature ion conductors , 2005 .

[25]  R. Huggins Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review , 2002 .

[26]  Lynne B. McCusker,et al.  Rietveld refinement guidelines , 1999 .

[27]  W. Kuhs,et al.  The argyrodites — A new family of tetrahedrally close-packed structures , 1979 .

[28]  D. Shen,et al.  Materials development and potential applications of transparent ceramics: A review , 2020 .

[29]  C. Cserháti,et al.  Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films , 2012 .

[30]  M. Bengisu Applications of Ceramic Materials , 2001 .

[31]  María Vallet-Regí,et al.  Ceramics for medical applications , 2001 .