Robust estimation of sparse precision matrix using adaptive weighted graphical lasso approach
暂无分享,去创建一个
Xinwei Deng | Peng Tang | Heeyoung Kim | Huijing Jiang | Xinwei Deng | Peng Tang | Heeyoung Kim | Huijing Jiang
[1] M. C. Jones,et al. Robust and efficient estimation by minimising a density power divergence , 1998 .
[2] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[3] F. Perron,et al. Minimax estimators of a covariance matrix , 1992 .
[4] Po-Ling Loh,et al. High-dimensional robust precision matrix estimation: Cellwise corruption under $\epsilon$-contamination , 2015, 1509.07229.
[5] Roland Fried,et al. On Robust Gaussian Graphical Modeling , 2010 .
[6] David W. Scott,et al. Parametric Statistical Modeling by Minimum Integrated Square Error , 2001, Technometrics.
[7] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[8] C. Croux,et al. Robust High-Dimensional Precision Matrix Estimation , 2014, 1501.01219.
[9] H. Zou,et al. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.
[10] Mathias Drton,et al. Robust graphical modeling of gene networks using classical and alternative t-distributions , 2010, 1009.3669.
[11] Eric C. Chi,et al. Robust Parametric Classification and Variable Selection by a Minimum Distance Criterion , 2011, 1109.6090.
[12] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .
[13] Mark Goadrich,et al. The relationship between Precision-Recall and ROC curves , 2006, ICML.
[14] Francisco J. Prieto,et al. Multivariate Outlier Detection and Robust Covariance Matrix Estimation , 2001, Technometrics.
[15] Hongzhe Li,et al. Robust Gaussian Graphical Modeling Via l1 Penalization , 2012, Biometrics.
[16] D. Hayes. Pharmacogenomic Predictor of Sensitivity to Preoperative Chemotherapy With Paclitaxel and Fluorouracil, Doxorubicin, and Cyclophosphamide in Breast Cancer , 2007 .
[17] Christophe Ambroise,et al. Inferring sparse Gaussian graphical models with latent structure , 2008, 0810.3177.
[18] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[19] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[20] D. Hunter,et al. A Tutorial on MM Algorithms , 2004 .
[21] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[22] Michael I. Jordan. Graphical Models , 2003 .
[23] Garth Tarr,et al. Robust estimation of precision matrices under cellwise contamination , 2015, Comput. Stat. Data Anal..
[24] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[25] Seung-Jean Kim,et al. Condition‐number‐regularized covariance estimation , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[26] Adam J. Rothman,et al. Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.
[27] René Natowicz,et al. Prediction of the outcome of preoperative chemotherapy in breast cancer using DNA probes that provide information on both complete and incomplete responses , 2008, BMC Bioinformatics.
[28] Alexandre d'Aspremont,et al. Convex optimization techniques for fitting sparse Gaussian graphical models , 2006, ICML.
[29] Xinwei Deng,et al. An improved modified cholesky decomposition approach for precision matrix estimation , 2020, Journal of Statistical Computation and Simulation.
[30] Jessika Weiss,et al. Graphical Models In Applied Multivariate Statistics , 2016 .
[31] Xinwei Deng,et al. Large Gaussian Covariance Matrix Estimation With Markov Structures , 2009 .
[32] W. Sharpe. The Sharpe Ratio , 1994 .
[33] Jianqing Fan,et al. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.
[34] Larry A. Wasserman,et al. High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.
[35] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[36] M. Pourahmadi. Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix , 2000 .
[37] Olivier Ledoit,et al. A well-conditioned estimator for large-dimensional covariance matrices , 2004 .
[38] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[39] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .