Stability of Gorenstein flat categories with respect to a semidualizing module

In this paper, we first introduce $\mathcal {W}_F$-Gorenstein modules to establish the following Foxby equivalence: $\xymatrix@C=80pt{\mathcal {G}(\mathcal {F})\cap \mathcal {A}_C(R) \ar@ [r]^{C\otimes_R-} & \mathcal {G}(\mathcal {W}_F) \ar@ [l]^{\textrm{Hom}_R(C,-)}} $ where $\mathcal {G}(\mathcal {F})$, $\mathcal {A}_C(R) $ and $\mathcal {G}(\mathcal {W}_F)$ denote the class of Gorenstein flat modules, the Auslander class and the class of $\mathcal {W}_F$-Gorenstein modules respectively. Then, we investigate two-degree $\mathcal {W}_F$-Gorenstein modules. An $R$-module $M$ is said to be two-degree $\mathcal {W}_F$-Gorenstein if there exists an exact sequence $\mathbb{G}_\bullet=\indent ...\longrightarrow G_1\longrightarrow G_0\longrightarrow G^0\longrightarrow G^1\longrightarrow...$ in $\mathcal {G}(\mathcal {W}_F)$ such that $M \cong$ $\im(G_0\rightarrow G^0) $ and that $\mathbb{G}_\bullet$ is Hom$_R(\mathcal {G}(\mathcal {W}_F),-)$ and $\mathcal {G}(\mathcal {W}_F)^+\otimes_R-$ exact. We show that two notions of the two-degree $\mathcal {W}_F$-Gorenstein and the $\mathcal {W}_F$-Gorenstein modules coincide when R is a commutative GF-closed ring.