A polynomially bounded operator on Hilbert space which is not similar to a contraction

Let E > 0. We prove that there exists an operator TE e2 "2 such that for any polynomial P we have IIP(TE)II not similar to a contraction, i.e. there does not exist an invertible operator S: f2 -e f2 such that JIS-1TESII tributed to Halmos after his well-known 1970 paper ("Ten problems in Hilbert space"). We also give some related finite-dimensional estimates. DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843 UNIVERSITE PARIS VI, EQUIPE D7ANALYSE, CASE 186, 75252 PARIS CEDEX 05, FRANCE E-mail address: gipQccr. jussieu. fr This content downloaded from 157.55.39.104 on Sun, 19 Jun 2016 06:52:47 UTC All use subject to http://about.jstor.org/terms

[1]  Vern I. Paulsen,et al.  The maximal operator space of a normed space , 1996, Proceedings of the Edinburgh Mathematical Society.

[2]  Vladimir Peller,et al.  Hankel operators and similarity to a contraction , 1996 .

[3]  G. Pisier Similarity problems and completely bounded maps , 1995 .

[4]  G. Pisier,et al.  Bilinear forms on exact operator spaces andB(H)⊗B(H) , 1995 .

[5]  James D. Stafney A class of operators and similarity to contractions. , 1994 .

[6]  G. Pisier,et al.  Bilinear Forms on Exact Operator Spaces , 1993 .

[7]  G. Pisier Multipliers and lacunary sets in non-amenable groups , 1992, math/9212207.

[8]  Gilles Pisier,et al.  Factorization of operator valued analytic functions , 1992 .

[9]  G. Pisier,et al.  Non commutative Khintchine and Paley inequalities , 1991 .

[10]  E. Effros,et al.  A New Approach to Operator Spaces , 1991, Canadian Mathematical Bulletin.

[11]  Vern I. Paulsen,et al.  Tensor products of operator spaces , 1991 .

[12]  N. Tomczak-Jaegermann Banach-Mazur distances and finite-dimensional operator ideals , 1989 .

[13]  S. Treil Geometric Methods in Spectral Theory of Vector-Valued Functions: Some Recent Results , 1989 .

[14]  COMPLETELY BOUNDED MAPS AND DILATIONS (Pitman Research Notes in Mathematics Series 146) , 1988 .

[15]  V. Paulsen Completely bounded maps and dilations , 1987 .

[16]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[17]  J. Bourgain On the similarity problem for polynomially bounded operators on hilbert space , 1986 .

[18]  N. Nikol’skiĭ,et al.  Treatise on the Shift Operator , 1986 .

[19]  U. Haagerup Injectivity and decomposition of completely bounded maps , 1985 .

[20]  Jean Bourgain New Banach space properties of the disc algebra andH∞ , 1984 .

[21]  V. P. Khavin,et al.  Linear and Complex Analysis Problem Book: 199 Research Problems , 1984 .

[22]  V. Paulsen Every Completely Polynomially Bounded Operator Is Similar to a Contraction , 1984 .

[23]  R. Durrett Brownian motion and martingales in analysis , 1984 .

[24]  The Itô-Clifford Integral II—Stochastic Differential Equations , 1983 .

[25]  R. Streater,et al.  The Itô-Clifford integral III. The Markov property of solutions to stochastic differential equations , 1983 .

[26]  V. Peller Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class. , 1982 .

[27]  R. Streater,et al.  The Itô-Clifford integral , 1982 .

[28]  Guido Weiss,et al.  Harmonic Analysis in Euclidean Spaces , 1981 .

[29]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[30]  S. Axler Review: K. E. Petersen, Brownian motion, Hardy spaces and bounded mean oscillation , 1978 .

[31]  K. Petersen Brownian Motion, Hardy Spaces and Bounded Mean Oscillation , 1977 .

[32]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[33]  Adriano M. Garsia,et al.  Martingale inequalities: seminar notes on recent progress , 1973 .

[34]  E. Stein,et al.  Hp spaces of several variables , 1972 .

[35]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[36]  Paul R. Halmos,et al.  Ten problems in Hilbert space , 1970 .

[37]  Lavon B. Page,et al.  Bounded and compact vectorial Hankel operators , 1970 .

[38]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[39]  P. Duren Theory of H[p] spaces , 1970 .

[40]  A power-bounded operator that is not polynomially bounded. , 1968 .

[41]  D. Sarason Generalized interpolation in , 1967 .

[42]  P. Halmos On Foguel’s answer to Nagy’s question , 1964 .

[43]  S. Foguel A counterexample to a problem of Sz.-Nagy , 1964 .

[44]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[45]  H. Helson,et al.  Prediction theory and Fourier Series in several variables , 1958 .

[46]  J. Neumann,et al.  Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes. Erhard Schmidt zum 75. Geburtstag in Verehrung gewidmet , 1950 .