MultiDimensional Sparse Super-Resolution
暂无分享,去创建一个
[1] Emmanuel J. Candès,et al. Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..
[2] C. D. Boor,et al. The least solution for the polynomial interpolation problem , 1992 .
[3] Jean-Jacques Fuchs,et al. Sparsity and uniqueness for some specific under-determined linear systems , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[4] Benjamin Recht,et al. Superresolution without separation , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[5] Michael J Rust,et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.
[6] J. Lippincott-Schwartz,et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.
[7] Laurent Jacques,et al. A Geometrical Study of Matching Pursuit Parametrization , 2008, IEEE Transactions on Signal Processing.
[8] Ulrich von der Ohe,et al. A multivariate generalization of Prony's method , 2015, 1506.00450.
[9] Tamir Bendory,et al. Robust Recovery of Positive Stream of Pulses , 2015, IEEE Transactions on Signal Processing.
[10] Richard M. Leahy,et al. Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..
[11] Stéphane Mallat,et al. Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..
[12] Peyman Milanfar,et al. Statistical and Information-Theoretic Analysis of Resolution in Imaging , 2006, IEEE Transactions on Information Theory.
[13] Rémi Gribonval,et al. Compressive Statistical Learning with Random Feature Moments , 2017, Mathematical Statistics and Learning.
[14] K. Bredies,et al. Inverse problems in spaces of measures , 2013 .
[15] Didier Henrion,et al. Exact Solutions to Super Resolution on Semi-Algebraic Domains in Higher Dimensions , 2015, IEEE Transactions on Information Theory.
[16] M. Viberg,et al. Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..
[17] A. Ouamri,et al. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds , 1989, IEEE Trans. Acoust. Speech Signal Process..
[18] C. D. Boor,et al. Computational aspects of polynomial interpolation in several variables , 1992 .
[19] Laurent Condat,et al. Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear Measurements , 2015 .
[20] Gongguo Tang. Atomic Decomposition of Mixtures of Translation-Invariant Signals , 2013 .
[21] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[22] Gabriel Peyré,et al. Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.
[23] D. Donoho. Superresolution via sparsity constraints , 1992 .
[24] Louis L. Scharf,et al. Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..
[25] Ankur Moitra,et al. Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.
[26] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[27] Gabriel Peyré,et al. Sparse Spikes Super-resolution on Thin Grids I: the LASSO , 2016 .
[28] Benjamin Recht,et al. The alternating descent conditional gradient method for sparse inverse problems , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[29] James A. Cadzow,et al. Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..
[30] Tomas Sauer. Prony’s method in several variables , 2017, Numerische Mathematik.
[31] Nikos D. Sidiropoulos,et al. Almost-sure identifiability of multidimensional harmonic retrieval , 2001, IEEE Trans. Signal Process..
[32] Gabriel Peyré,et al. Support Recovery for Sparse Super-Resolution of Positive Measures , 2017 .
[33] Laurent Demanet,et al. The recoverability limit for superresolution via sparsity , 2015, ArXiv.
[34] M. Vetterli,et al. Sparse Sampling of Signal Innovations: Theory, Algorithms and Performance Bounds , 2007 .
[35] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[36] Randolph L. Moses,et al. Two-dimensional Prony modeling and parameter estimation , 1993, IEEE Trans. Signal Process..
[37] J. Claerbout,et al. Robust Modeling With Erratic Data , 1973 .
[38] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[39] Benjamin Recht,et al. Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.
[40] I. Johnstone,et al. Maximum Entropy and the Nearly Black Object , 1992 .
[41] Yohann de Castro,et al. Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.
[42] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[43] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[44] Wenjing Liao,et al. MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.
[45] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[46] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[47] Marcus Carlsson,et al. ESPRIT for Multidimensional General Grids , 2018, SIAM J. Matrix Anal. Appl..
[48] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[49] F. Gamboa,et al. Spike detection from inaccurate samplings , 2013, 1301.5873.
[50] F. Santosa,et al. Linear inversion of ban limit reflection seismograms , 1986 .
[51] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[52] Jens Haueisen,et al. Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations , 2013, NeuroImage.
[53] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[54] R. A. Lorentz,et al. Multivariate Hermite interpolation by algebraic polynomials: a survey , 2000 .
[55] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[56] S. Levy,et al. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .