Asymptotic-preserving scheme for highly anisotropic non-linear diffusion equations
暂无分享,去创建一个
[1] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[2] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[3] P. Degond. Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.
[4] Prateek Sharma,et al. A fast semi-implicit method for anisotropic diffusion , 2010, J. Comput. Phys..
[5] Timothy A. Davis,et al. A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.
[6] Derek K. Jones,et al. Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .
[7] B. Berkowitz. Characterizing flow and transport in fractured geological media: A review , 2002 .
[8] Fabrice Deluzet,et al. Numerical approximation of the Euler-Maxwell model in the quasineutral limit , 2011, J. Comput. Phys..
[9] J. Vázquez. The Porous Medium Equation: Mathematical Theory , 2006 .
[10] N. Crouseilles,et al. An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .
[11] Sergey Shmarev,et al. A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions , 2005 .
[12] Isabelle Ramière,et al. Convergence analysis of the Q1‐finite element method for elliptic problems with non‐boundary‐fitted meshes , 2008 .
[13] Jean-Luc Guermond,et al. Eléments finis : théorie, applications, mise en œuvre , 2002 .
[14] C. Beaulieu,et al. The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.
[15] Claudia Negulescu,et al. Numerical study of a nonlinear heat equation for plasma physics , 2011, Int. J. Comput. Math..
[16] Livia Isoardi. Modelisation du transport dans le plasma de bord d'un tokamak , 2010 .
[17] Timothy J. Williams,et al. A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers , 1999, Int. J. High Perform. Comput. Appl..
[18] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[19] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[20] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[21] Timothy A. Davis,et al. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.
[22] Pierre Degond,et al. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..
[23] Claudia Negulescu,et al. An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..
[24] Luc Mieussens,et al. Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..
[25] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[26] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[27] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[28] J. Vázquez. The Porous Medium Equation , 2006 .
[29] Philippe Ghendrih,et al. The Plasma Boundary of Magnetic Fusion Devices , 2001 .
[30] Fabrice Deluzet,et al. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model , 2011, 1104.3339.