Cohesion of unsaturated residual soils as a function of volumetric water content

Soil cohesion changes with the moisture state of a soil. This paper presents an empirical equation to predict the cohesive component in the shear strength of unsaturated residual soils as an exponential function of volumetric water content. The formulation originated from a multiple linear-regression analysis for data sets obtained from shear tests using undisturbed soils with varying moisture contents. The empirical equations can realistically predict the reduction in soil cohesion due to wetting (R2=0.88, 0.93). The methodology described in this paper provides a convenient alternative to the quantitative estimation of unsaturated shear strength, especially in an engineering practice such as a slope stability analysis as no matrix suction data are required.RésuméLa cohésion des sols change avec leur teneur en eau. L’article présente une relation empirique permettant d’exprimer la valeur de cohésion de sols résiduels non saturés comme une fonction exponentielle de la teneur en eau volumétrique. La formulation résulte d’une analyse par régression linéaire de séries de données provenant d’essais de cisaillement sur des sols non remaniés présentant diverses teneurs en eau. Les équations obtenues sont capables de représenter correctement la diminution de la cohésion résultant de l’humidification d’un sol. La méthodologie présentée dans l’article permet d’obtenir une estimation de la résistance au cisaillement en conditions non saturées, en particulier pour des applications relatives à des analyses de stabilité des pentes, sans faire appel à des données concernant l’état de succion du sol.

[1]  R. Chaney,et al.  DETERMINATION OF SHEAR STRENGTH PARAMETERS OF UNSATURATED SILTS AND SANDS BASED ON THE WATER RETENTION CURVE , 1997 .

[2]  D. G. Fredlund,et al.  Effect of soil suction on slope stability at Notch Hill , 1989 .

[3]  Delwyn G. Fredlund,et al.  The relationship of the unsaturated soil shear strength to the soil-water characteristic curve , 1996 .

[4]  Linchang Miao,et al.  Research of soil–water characteristics and shear strength features of Nanyang expansive soil , 2002 .

[5]  Sang-Seom Jeong,et al.  Influence of rainfall-induced wetting on the stability of slopes in weathered soils , 2004 .

[6]  Sudhakar M. Rao Role of apparent cohesion in the stability of Dominician allophane soil slopes , 1996 .

[7]  D. Fredlund,et al.  The shear strength of unsaturated soils , 1978 .

[8]  D. E. Pufahl,et al.  Model for the prediction of shear strength with respect to soil suction , 1996 .

[9]  V. Escario,et al.  The shear strength of partly saturated soils , 1986 .

[10]  Harianto Rahardjo,et al.  DETERMINATION OF THE SHEAR STRENGTH PARAMETERS OF AN UNSATURATED SOIL USING THE DIRECT SHEAR TEST , 1988 .

[11]  D. G. Fredlund,et al.  Matrix suction and diffusive transport in centrifuge models: Discussion , 1995 .

[12]  Harianto Rahardjo,et al.  SHEAR-STRENGTH CHARACTERISTICS OF A RESIDUAL SOIL , 1995 .

[13]  N. Khalili,et al.  A unique relationship for χ for the determination of the shear strength of unsaturated soils , 1998 .

[14]  Seung-Rae Lee,et al.  An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation , 2003 .

[15]  A. W. Bishop,et al.  The Principle of Effective Stress , 1959 .