Computing Teichmuller Shape Space

Shape indexing, classification, and retrieval are fundamental problems in computer graphics. This work introduces a novel method for surface indexing and classification based on Teichmuller theory. The Teichmuller space for surfaces with the same topology is a finite dimensional manifold, where each point represents a conformal equivalence class, a curve represents a deformation process from one class to the other. We apply Teichmuller space coordinates as shape descriptors, which are succinct, discriminating and intrinsic; invariant under the rigid motions and scalings, insensitive to resolutions. Furthermore, the method has solid theoretic foundation, and the computation of Teichmuller coordinates is practical, stable and efficient. This work focuses on the surfaces with negative Euler numbers, which have a unique conformal Riemannian metric with -1 Gaussian curvature. The coordinates which we will compute are the lengths of a special set of geodesics under this special metric. The metric can be obtained by the curvature flow algorithm, the geodesics can be calculated using algebraic topological method. We tested our method extensively for indexing and comparison of about one hundred of surfaces with various topologies, geometries and resolutions. The experimental results show the efficacy and efficiency of the length coordinate of the Teichmuller space.

[1]  Karthik Ramani,et al.  Three-dimensional shape searching: state-of-the-art review and future trends , 2005, Comput. Aided Des..

[2]  Pan Xiang,et al.  Pose Insensitive 3D Retrieval by Poisson Shape Histogram , 2007, International Conference on Computational Science.

[3]  Craig Gotsman,et al.  Characterizing Shape Using Conformal Factors , 2008, 3DOR@Eurographics.

[4]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[5]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[6]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[7]  B. Chow,et al.  Hamilton's Ricci Flow , 2018 .

[8]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[10]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1: Volume 1 , 1997 .

[11]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[12]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[13]  Ariel Shamir,et al.  Pose-Oblivious Shape Signature , 2007, IEEE Transactions on Visualization and Computer Graphics.

[14]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[15]  Monica K. Hurdal,et al.  Planar Conformal Mappings of Piecewise Flat Surfaces , 2002, VisMath.

[16]  Shing-Tung Yau,et al.  Surface classification using conformal structures , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[17]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[18]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[19]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[20]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[21]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[22]  Tony Tung,et al.  The Augmented Multiresolution Reeb Graph Approach for Content-based Retrieval of 3d Shapes , 2005, Int. J. Shape Model..

[23]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[24]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[25]  Paul M. Thompson,et al.  Mutual information-based 3D surface matching with applications to face recognition and brain mapping , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[26]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[27]  Hong Qin,et al.  Topology-driven surface mappings with robust feature alignment , 2005, VIS 05. IEEE Visualization, 2005..

[28]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[30]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[31]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[32]  Shing-Tung Yau,et al.  Global Conformal Parameterization , 2003, Symposium on Geometry Processing.

[33]  Sen Wang,et al.  3D Surface Matching and Recognition Using Conformal Geometry , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[35]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[36]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[37]  G. Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.

[38]  Feng Luo On Teichmuller Space of Surface with Boundary , 2006 .

[39]  Peter Schröder,et al.  Discrete Willmore flow , 2005, SIGGRAPH Courses.

[40]  Gregory Leibon Characterizing the Delaunay decompositions of compact hyperbolic surfaces , 2001, math/0103174.

[41]  Shi-Min Hu,et al.  Optimal Surface Parameterization Using Inverse Curvature Map , 2008, IEEE Transactions on Visualization and Computer Graphics.

[42]  Hao Zhang,et al.  A spectral approach to shape-based retrieval of articulated 3D models , 2007, Comput. Aided Des..

[43]  Xianfeng Gu,et al.  Matching 3D Shapes Using 2D Conformal Representations , 2004, MICCAI.

[44]  Wei Zeng,et al.  Ricci Flow for 3D Shape Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[45]  Feng Luo Geodesic length functions and Teichmüller spaces , 1998 .

[46]  P. Buser,et al.  Geometry and Spectra of Compact Riemann Surfaces , 1992 .

[47]  Shing-Tung Yau,et al.  Computing geodesic spectra of surfaces , 2007, Symposium on Solid and Physical Modeling.

[48]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[49]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .