Non-left-handed transmission and bianisotropic effect in a [pi]-shaped metallic metamaterials

A $\ensuremath{\pi}$-shaped metallic metamaterial (geometrically, a combination medium of C-shaped resonators and continuous wires) is proposed to numerically investigate its transmission band near the resonant frequency, where otherwise it should be a negative-permeability (or negative-permittivity) stop band if either the C-shaped or continuous-wire constituent is separately considered. However, in contrast to the left-handed materials (LHMs) composed of split-ring resonators and wires as well as other metallic LHMs, this resonant transmission is a non-left-handed one as a result of the intrinsic bianisotropic effect attributed to the electrically asymmetric configuration of this $\ensuremath{\pi}$-shaped metamaterial.