On Local Inclusion Degree of Intuitionistic Fuzzy Sets

This paper mainly introduce the definition of local inclusion degree of IF sets in terms of the elementwise values, which is considered a locally determined inclusion degree. We then investigate a series of properties of the local inclusion degree. Furthermore, the measure of similarity between intuitionistic fuzzy sets is discussed on the basis of local inclusion degree.

[1]  Athanasios Kehagias,et al.  L-fuzzy valued inclusion measure, L-fuzzy similarity and L-fuzzy distance , 2001, Fuzzy Sets Syst..

[2]  Yu-Hai Liu,et al.  Subsethood on intuitionistic fuzzy sets , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[3]  Krassimir T. Atanassov,et al.  Intuitionistic Fuzzy Sets - Theory and Applications , 1999, Studies in Fuzziness and Soft Computing.

[4]  Lin Lin,et al.  A Method of Intuitionistic Fuzzy Reasoning Based on Inclusion Degree and Similarity Measure , 2007, ICFIE.

[5]  Humberto Bustince,et al.  Structures on intuitionistic fuzzy relations , 1996, Fuzzy Sets Syst..

[6]  Chris Cornelis,et al.  Inclusion Measures in Intuitionistic Fuzzy Set Theory , 2003, ECSQARU.

[7]  Przemyslaw Grzegorzewski,et al.  On possible and necessary inclusion of intuitionistic fuzzy sets , 2011, Inf. Sci..

[8]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[9]  Chris Cornelis,et al.  Classification Of Intuitionistic Fuzzy Implicators: An Algebraic Approach , 2002, JCIS.

[10]  David L. Olson,et al.  Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis , 2007, Pattern Recognit. Lett..

[11]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[12]  Chris Cornelis,et al.  Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application , 2004, Int. J. Approx. Reason..

[13]  Przemyslaw Grzegorzewski,et al.  Subsethood measure for intuitionistic fuzzy sets , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[14]  Michael Clarke,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1991, Lecture Notes in Computer Science.