Entropy and set cardinality inequalities for partition‐determined functions

A new notion of partition-determined functions is introduced, and several basic inequalities are developed for the entropy of such functions of independent random variables, as well as for cardinalities of compound sets obtained using these functions. Here a compound set means a set obtained by varying each argument of a function of several variables over a set associated with that argument, where all the sets are subsets of an appropriate algebraic structure so that the function is well defined. On the one hand, the entropy inequalities developed for partition-determined functions imply entropic analogues of general inequalities of Pl\"unnecke-Ruzsa type. On the other hand, the cardinality inequalities developed for compound sets imply several inequalities for sumsets, including for instance a generalization of inequalities proved by Gyarmati, Matolcsi and Ruzsa (2010). We also provide partial progress towards a conjecture of Ruzsa (2007) for sumsets in nonabelian groups. All proofs are elementary and rely on properly developing certain information-theoretic inequalities.

[1]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[2]  Fan Chung Graham,et al.  Some intersection theorems for ordered sets and graphs , 1986, J. Comb. Theory, Ser. A.

[3]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[4]  Béla Bollobás,et al.  Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.

[5]  Helmut Plünnecke,et al.  Eine zahlentheoretische Anwendung der Graphentheorie. , 1970 .

[6]  Ehud Friedgut,et al.  Hypergraphs, Entropy, and Inequalities , 2004, Am. Math. Mon..

[7]  Katalin Gyarmati,et al.  A superadditivity and submultiplicativity property for cardinalities of sumsets , 2007, Comb..

[8]  Prasad Tetali,et al.  Information-theoretic inequalities in additive combinatorics , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[9]  Béla Bollobás,et al.  Projections, entropy and sumsets , 2007, Comb..

[10]  J. Radhakrishnan Entropy and Counting ∗ , 2001 .

[11]  Noga Alon,et al.  An Application of Graph Theory to Additive Number Theory , 1985, Eur. J. Comb..

[12]  Mokshay Madiman,et al.  On the entropy of sums , 2008, 2008 IEEE Information Theory Workshop.

[13]  Terence Tao,et al.  Sumset and Inverse Sumset Theory for Shannon Entropy , 2009, Combinatorics, Probability and Computing.

[14]  Vadim A. Kaimanovich,et al.  Random Walks on Discrete Groups: Boundary and Entropy , 1983 .

[15]  Imre Z. Ruzsa Sumsets and entropy , 2009, Random Struct. Algorithms.

[16]  Mokshay M. Madiman,et al.  Sandwich bounds for joint entropy , 2007, 2007 IEEE International Symposium on Information Theory.

[17]  Mokshay M. Madiman,et al.  Generalized Entropy Power Inequalities and Monotonicity Properties of Information , 2006, IEEE Transactions on Information Theory.

[18]  Te Sun Han Nonnegative Entropy Measures of Multivariate Symmetric Correlations , 1978, Inf. Control..

[19]  Mokshay M. Madiman,et al.  Information Inequalities for Joint Distributions, With Interpretations and Applications , 2008, IEEE Transactions on Information Theory.

[20]  Sergey G. Bobkov,et al.  Dimensional behaviour of entropy and information , 2011, ArXiv.

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  Giorgis Petridis,et al.  New proofs of Plünnecke-type estimates for product sets in groups , 2011, Comb..

[23]  F. Matús,et al.  Two Constructions on Limits of Entropy Functions , 2007, IEEE Transactions on Information Theory.

[24]  Imre Ruzsa Cardinality questions about sumsets , 2007 .

[25]  Mokshay M. Madiman,et al.  The entropies of the sum and the difference of two IID random variables are not too different , 2010, 2010 IEEE International Symposium on Information Theory.

[26]  S. Artstein,et al.  Entropy Methods , .

[27]  S. Bobkov,et al.  Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures , 2011, 1109.5287.

[28]  B. Bollobás,et al.  Projections of Bodies and Hereditary Properties of Hypergraphs , 1995 .

[29]  Alfred Geroldinger,et al.  Combinatorial Number Theory and Additive Group Theory , 2009 .

[30]  Katalin Gyarmati,et al.  Plünnecke’s Inequality for Different Summands , 2008, 0810.1488.