A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of Communication-Avoiding Krylov Subspace Methods
暂无分享,去创建一个
[1] G. Meurant. The Lanczos and conjugate gradient algorithms , 2008 .
[2] Eric de Sturler,et al. A Performance Model for Krylov Subspace Methods on Mesh-Based Parallel Computers , 1996, Parallel Comput..
[3] Gerard L. G. Sleijpen,et al. Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.
[4] L. Reichel,et al. A Newton basis GMRES implementation , 1994 .
[5] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[6] Lothar Reichel,et al. On the generation of Krylov subspace bases , 2012 .
[7] Dennis Gannon,et al. On the Impact of Communication Complexity on the Design of Parallel Numerical Algorithms , 1984, IEEE Transactions on Computers.
[8] J. Demmel,et al. Avoiding Communication in Computing Krylov Subspaces , 2007 .
[9] W. Joubert,et al. Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory , 1992 .
[10] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .
[11] J. Vanrosendale,et al. Minimizing inner product data dependencies in conjugate gradient iteration , 1983 .
[12] Qiang Ye,et al. Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric linear systems , 2000, Math. Comput..
[13] Sivan Toledo,et al. Quantitative performance modeling of scientific computations and creating locality in numerical algorithms , 1995 .
[14] Sivan Toledo,et al. Eecient Out-of-core Algorithms for Linear Relaxation Using Blocking Covers Out-of-core Linear Relaxation 2 , 2007 .
[15] Graham F. Carey,et al. Parallelizable Restarted Iterative Methods for Nonsymmetric Linear Systems , 1991, PPSC.
[16] Anthony T. Chronopoulos,et al. Parallel Iterative S-Step Methods for Unsymmetric Linear Systems , 1996, Parallel Comput..
[17] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[18] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[19] Anthony T. Chronopoulos,et al. On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy , 1989, Parallel Comput..
[20] H. Walker,et al. Note on a Householder implementation of the GMRES method , 1986 .
[21] James Demmel,et al. Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[22] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[23] Qiang Ye,et al. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..
[24] Walter Gautschi,et al. The condition of polynomials in power form , 1979 .
[25] James Demmel,et al. Avoiding Communication in Two-Sided Krylov Subspace Methods , 2011 .
[26] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.