Index Sets for n-Decidable Structures Categorical Relative to m-Decidable Presentations

We say that a structure is categorical relative to n-decidable presentations (or autostable relative to n-constructivizations) if any two n-decidable copies of the structure are computably isomorphic. For n = 0, we have the classical definition of a computably categorical (autostable) structure. Downey, Kach, Lempp, Lewis, Montalb´an, and Turetsky proved that there is no simple syntactic characterization of computable categoricity. More formally, they showed that the index set of computably categorical structures is Π11-complete. Here we study index sets of n-decidable structures that are categorical relative to m-decidable presentations, for various m, n ∈ ω. If m ≥ n ≥ 0, then the index set is again Π11-complete, i.e., there is no nice description of the class of n-decidable structures that are categorical relative to m-decidable presentations. In the case m = n−1 ≥ 0, the index set is Π40-complete, while if 0 ≤ m ≤ n−2, the index set is Π30-complete.

[1]  Index Sets of Almost Prime Constructive Models , 2015 .

[2]  Bakhadyr Khoussainov,et al.  Complexity of Categorical Theories with Computable Models , 2004 .

[3]  S. Goncharov autostability of prime models under strong constructivizations , 2009 .

[4]  S. S. Goncharov,et al.  Problem of the number of non-self-equivalent constructivizations , 1980 .

[5]  S. S. Goncharov,et al.  The quantity of nonautoequivalent constructivizations , 1977 .

[6]  S. S. Goncharov,et al.  Index Sets of Constructive Models of Bounded Signature that are Autostable Relative to Strong Constructivizations , 2015 .

[7]  Rodney G. Downey,et al.  Computable categoricity versus relative computable categoricity , 2013 .

[8]  Сергей Савостьянович Гончаров,et al.  Об автоустойчивости относительно сильных конструктивизаций почти простых моделей@@@On autostability of almost prime models relative to strong constructivizations , 2010 .

[9]  Ekaterina B. Fokina,et al.  Degrees of categoricity of computable structures , 2010, Arch. Math. Log..

[10]  Rodney G. Downey,et al.  The complexity of computable categoricity , 2015 .

[11]  Barbara F. Csima,et al.  Computable Model Theory , 2014 .

[12]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  S. S. Goncharov,et al.  Index sets of constructive models of nontrivial signature autostable relative to strong constructivizations , 2015 .

[14]  Valentina S. Harizanov,et al.  Computable model theory , 2014, Turing's Legacy.

[15]  S. S. Goncharov,et al.  Autostability and computable families of constructivizations , 1975 .

[16]  M. Kummer,et al.  Discrete families of recursive functions and index sets , 1994 .

[17]  O. V. Kudinov,et al.  An autostable 1-decidable model without a computable Scott family of ∃-formulas , 1996 .

[18]  A. I. Mal'tsev CONSTRUCTIVE ALGEBRAS I , 1961 .

[19]  Uri Andrews,et al.  Spectra of theories and structures , 2014 .

[21]  S. S. Goncharov,et al.  The index set of Boolean algebras autostable relative to strong constructivizations , 2015 .

[22]  S. S. Goncharov Degrees of autostability relative to strong constructivizations , 2011 .