The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium

The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel roles in photosynthesis or photobiology. Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species.

[1]  E V Koonin,et al.  Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. , 1998, Trends in genetics : TIG.

[2]  D. Gatti,et al.  Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump , 2000, The EMBO journal.

[3]  F. Tabita,et al.  The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum , 1997, Journal of bacteriology.

[4]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[5]  I. Paulsen,et al.  Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. , 2000, Journal of molecular biology.

[6]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[7]  B. Zybailov,et al.  Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe-2S ferredoxins. , 2001, Biochemistry.

[8]  W R Pearson,et al.  Flexible sequence similarity searching with the FASTA3 program package. , 2000, Methods in molecular biology.

[9]  C. Bauer,et al.  Molecular evidence for the early evolution of photosynthesis. , 2000, Science.

[10]  Miguel Teixeira,et al.  Structure of a dioxygen reduction enzyme from Desulfovibrio gigas , 2000, Nature Structural Biology.

[11]  K. Gish,et al.  The phylogenetic relationships of Chlorobium tepidum and Chloroflexus aurantiacus based upon their RecA sequences. , 1998, FEMS microbiology letters.

[12]  C. Friedrich,et al.  Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism? , 2001, Applied and Environmental Microbiology.

[13]  C. Gomes,et al.  The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane‐bound oxygen‐reducing respiratory chain , 2001, FEBS letters.

[14]  H. Sakurai,et al.  Purification of ferredoxins and their reaction with purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. , 2001, Biochimica et biophysica acta.

[15]  J A Eisen,et al.  Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.

[16]  B. Buchanan,et al.  Photoreduction of ferredoxin and its use in NAD(P)+ reduction by a subcellular preparation from the photosynthetic bacterium, Chlorobium thiosulfatophilum. , 1969, Biochimica et biophysica acta.

[17]  A EisenJ,et al.  DNA修復遺伝子,タンパクと過程のphylogenomic(系統発生的ゲノム)調査 , 1999 .

[18]  R. Meganathan Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. , 2001, Vitamins and hormones.

[19]  Melvin I Simon,et al.  Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[21]  J. Duus,et al.  Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Sirevåg,et al.  Ribulose 1,5-diphosphate carboxylase and Chlorobium thiosulfatophilum , 1976, Archives of Microbiology.

[23]  Carl R. Woese,et al.  A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. , 1991, Archives of Microbiology.

[24]  J. Wiesner,et al.  Identification of (E)‐4‐hydroxy‐3‐methyl‐but‐2‐enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli , 2001 .

[25]  M. Adams,et al.  Key Role for Sulfur in Peptide Metabolism and in Regulation of Three Hydrogenases in the Hyperthermophilic ArchaeonPyrococcus furiosus , 2001, Journal of bacteriology.

[26]  T. Bobik,et al.  Cobalamin (coenzyme B12): synthesis and biological significance. , 1996, Annual review of microbiology.

[27]  G. Hauska,et al.  The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. , 1992, Biochimica et biophysica acta.

[28]  D. Söll,et al.  Aminoacyl-tRNA synthesis. , 2000, Annual review of biochemistry.

[29]  P. Hanawalt,et al.  A phylogenomic study of DNA repair genes, proteins, and processes. , 1999, Mutation research.

[30]  J. Golbeck Shared thematic elements in photochemical reaction centers. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Madigan,et al.  New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′,2′-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains , 1997, Archives of Microbiology.

[32]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M H Saier,et al.  Enzyme I(Ntr) from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. , 1999, The Journal of biological chemistry.

[34]  L. Bañeras,et al.  Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola. , 2000, Biochimica et biophysica acta.

[35]  A. Kolstø,et al.  Physical map of the genome of the green phototrophic bacterium Chlorobium tepidum , 1995, Journal of bacteriology.

[36]  F. Tabita,et al.  Rubredoxin from the Green Sulfur Bacterium Chlorobium tepidum Functions as an Electron Acceptor for Pyruvate Ferredoxin Oxidoreductase* , 1999, The Journal of Biological Chemistry.

[37]  D. Bryant,et al.  Chromosomal Gene Inactivation in the Green Sulfur Bacterium Chlorobium tepidum by Natural Transformation , 2001, Applied and Environmental Microbiology.

[38]  S. Beale,et al.  Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups , 2004, Archives of Microbiology.

[39]  K. Schaffner,et al.  A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. , 2001, Biochemistry.

[40]  J A Eisen,et al.  Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. , 1998, Genome research.

[41]  R. Poole,et al.  Respiratory Protection of Nitrogenase Activity in Azotobacter vinelandii—Roles of the Terminal Oxidases , 1997, Bioscience reports.

[42]  T. Gruber,et al.  Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus , 1998, Archives of Microbiology.

[43]  T. Fukui,et al.  ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. , 2001, European journal of biochemistry.

[44]  B. Buchanan,et al.  A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[45]  T. Cavalier-smith Obcells as Proto-Organisms: Membrane Heredity, Lithophosphorylation, and the Origins of the Genetic Code, the First Cells, and Photosynthesis , 2001, Journal of Molecular Evolution.

[46]  H. Sakurai,et al.  Purification and characterization of ferredoxin-NAD(P)(+) reductase from the green sulfur bacterium Chlorobium tepidum. , 2002, Biochimica et biophysica acta.

[47]  S. Salzberg,et al.  Microbial gene identification using interpolated Markov models. , 1998, Nucleic acids research.

[48]  F. Tabita,et al.  D-ribulose-1,5-bisphosphate carboxylase in Chlorobium thiosulfatophilum Tassajara. , 1974, Biochimica et biophysica acta.

[49]  R. Schulz,et al.  Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). , 1996, Biochimica et biophysica acta.

[50]  N. Frigaard,et al.  Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria , 1998, Photosynthesis Research.

[51]  F. Tabita,et al.  A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  W. Eisenreich,et al.  Deoxyxylulose phosphate pathway to terpenoids. , 2001, Trends in plant science.

[53]  J. Suzuki,et al.  Genetic analysis of chlorophyll biosynthesis. , 1997, Annual review of genetics.