The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium
暂无分享,去创建一个
Ingeborg Holt | Fan Yang | Jonathan A Eisen | Owen White | J Craig Venter | Karen E Nelson | Jessica Vamathevan | Ian T Paulsen | Hervé Tettelin | Robert J Dodson | O. White | D. Radune | J. Venter | J. Peterson | L. Umayam | C. Fraser | H. Tettelin | D. Haft | T. Feldblyum | K. Nelson | I. Paulsen | J. Eisen | W. Nierman | W. Nelson | J. Heidelberg | R. Deboy | R. Dodson | H. Khouri | M. Gwinn | E. Hickey | K. Ketchum | I. Holt | T. Shea | A. S. Durkin | Martin Wu | J. Vamathevan | T. Gruber | T. Mason | D. Parksey | D. Bryant | Cheryl L. Hansen | Fan Yang | Daniel H Haft | Claire M Fraser | William C Nelson | A Scott Durkin | Hoda Khouri | Martin Wu | Donald A Bryant | Diana Radune | John F Heidelberg | Tanya Mason | William C Nierman | Michelle L Gwinn | Tamara V Feldblyum | M. B. Craven | Karen A Ketchum | Robert Deboy | Erin K Hickey | Jeremy D Peterson | James L Kolonay | Lowell A Umayam | Michael Brenner | Terrance P Shea | Debbie Parksey | Cheryl L Hansen | M Brook Craven | Tanja M Gruber | M. Brenner | Debbie S. Parksey | T. M. Gruber
[1] E V Koonin,et al. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. , 1998, Trends in genetics : TIG.
[2] D. Gatti,et al. Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump , 2000, The EMBO journal.
[3] F. Tabita,et al. The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum , 1997, Journal of bacteriology.
[4] J. Lobry. Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.
[5] I. Paulsen,et al. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. , 2000, Journal of molecular biology.
[6] S. Salzberg,et al. Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.
[7] B. Zybailov,et al. Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe-2S ferredoxins. , 2001, Biochemistry.
[8] W R Pearson,et al. Flexible sequence similarity searching with the FASTA3 program package. , 2000, Methods in molecular biology.
[9] C. Bauer,et al. Molecular evidence for the early evolution of photosynthesis. , 2000, Science.
[10] Miguel Teixeira,et al. Structure of a dioxygen reduction enzyme from Desulfovibrio gigas , 2000, Nature Structural Biology.
[11] K. Gish,et al. The phylogenetic relationships of Chlorobium tepidum and Chloroflexus aurantiacus based upon their RecA sequences. , 1998, FEMS microbiology letters.
[12] C. Friedrich,et al. Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism? , 2001, Applied and Environmental Microbiology.
[13] C. Gomes,et al. The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane‐bound oxygen‐reducing respiratory chain , 2001, FEBS letters.
[14] H. Sakurai,et al. Purification of ferredoxins and their reaction with purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. , 2001, Biochimica et biophysica acta.
[15] J A Eisen,et al. Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.
[16] B. Buchanan,et al. Photoreduction of ferredoxin and its use in NAD(P)+ reduction by a subcellular preparation from the photosynthetic bacterium, Chlorobium thiosulfatophilum. , 1969, Biochimica et biophysica acta.
[17] A EisenJ,et al. DNA修復遺伝子,タンパクと過程のphylogenomic(系統発生的ゲノム)調査 , 1999 .
[18] R. Meganathan. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. , 2001, Vitamins and hormones.
[19] Melvin I Simon,et al. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[20] S. Salzberg,et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.
[21] J. Duus,et al. Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[22] R. Sirevåg,et al. Ribulose 1,5-diphosphate carboxylase and Chlorobium thiosulfatophilum , 1976, Archives of Microbiology.
[23] Carl R. Woese,et al. A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. , 1991, Archives of Microbiology.
[24] J. Wiesner,et al. Identification of (E)‐4‐hydroxy‐3‐methyl‐but‐2‐enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli , 2001 .
[25] M. Adams,et al. Key Role for Sulfur in Peptide Metabolism and in Regulation of Three Hydrogenases in the Hyperthermophilic ArchaeonPyrococcus furiosus , 2001, Journal of bacteriology.
[26] T. Bobik,et al. Cobalamin (coenzyme B12): synthesis and biological significance. , 1996, Annual review of microbiology.
[27] G. Hauska,et al. The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. , 1992, Biochimica et biophysica acta.
[28] D. Söll,et al. Aminoacyl-tRNA synthesis. , 2000, Annual review of biochemistry.
[29] P. Hanawalt,et al. A phylogenomic study of DNA repair genes, proteins, and processes. , 1999, Mutation research.
[30] J. Golbeck. Shared thematic elements in photochemical reaction centers. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[31] M. Madigan,et al. New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′,2′-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains , 1997, Archives of Microbiology.
[32] J. Lake,et al. Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[33] M H Saier,et al. Enzyme I(Ntr) from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. , 1999, The Journal of biological chemistry.
[34] L. Bañeras,et al. Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola. , 2000, Biochimica et biophysica acta.
[35] A. Kolstø,et al. Physical map of the genome of the green phototrophic bacterium Chlorobium tepidum , 1995, Journal of bacteriology.
[36] F. Tabita,et al. Rubredoxin from the Green Sulfur Bacterium Chlorobium tepidum Functions as an Electron Acceptor for Pyruvate Ferredoxin Oxidoreductase* , 1999, The Journal of Biological Chemistry.
[37] D. Bryant,et al. Chromosomal Gene Inactivation in the Green Sulfur Bacterium Chlorobium tepidum by Natural Transformation , 2001, Applied and Environmental Microbiology.
[38] S. Beale,et al. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups , 2004, Archives of Microbiology.
[39] K. Schaffner,et al. A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. , 2001, Biochemistry.
[40] J A Eisen,et al. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. , 1998, Genome research.
[41] R. Poole,et al. Respiratory Protection of Nitrogenase Activity in Azotobacter vinelandii—Roles of the Terminal Oxidases , 1997, Bioscience reports.
[42] T. Gruber,et al. Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus , 1998, Archives of Microbiology.
[43] T. Fukui,et al. ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. , 2001, European journal of biochemistry.
[44] B. Buchanan,et al. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. , 1966, Proceedings of the National Academy of Sciences of the United States of America.
[45] T. Cavalier-smith. Obcells as Proto-Organisms: Membrane Heredity, Lithophosphorylation, and the Origins of the Genetic Code, the First Cells, and Photosynthesis , 2001, Journal of Molecular Evolution.
[46] H. Sakurai,et al. Purification and characterization of ferredoxin-NAD(P)(+) reductase from the green sulfur bacterium Chlorobium tepidum. , 2002, Biochimica et biophysica acta.
[47] S. Salzberg,et al. Microbial gene identification using interpolated Markov models. , 1998, Nucleic acids research.
[48] F. Tabita,et al. D-ribulose-1,5-bisphosphate carboxylase in Chlorobium thiosulfatophilum Tassajara. , 1974, Biochimica et biophysica acta.
[49] R. Schulz,et al. Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). , 1996, Biochimica et biophysica acta.
[50] N. Frigaard,et al. Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria , 1998, Photosynthesis Research.
[51] F. Tabita,et al. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[52] W. Eisenreich,et al. Deoxyxylulose phosphate pathway to terpenoids. , 2001, Trends in plant science.
[53] J. Suzuki,et al. Genetic analysis of chlorophyll biosynthesis. , 1997, Annual review of genetics.