ShearLab 3D

Wavelets and their associated transforms are highly efficient when approximating and analyzing one-dimensional signals. However, multivariate signals such as images or videos typically exhibit curvilinear singularities, which wavelets are provably deficient in sparsely approximating and also in analyzing in the sense of, for instance, detecting their direction. Shearlets are a directional representation system extending the wavelet framework, which overcomes those deficiencies. Similar to wavelets, shearlets allow a faithful implementation and fast associated transforms. In this article, we will introduce a comprehensive carefully documented software package coined ShearLab 3D (www.ShearLab.org) and discuss its algorithmic details. This package provides MATLAB code for a novel faithful algorithmic realization of the 2D and 3D shearlet transform (and their inverses) associated with compactly supported universal shearlet systems incorporating the option of using CUDA. We will present extensive numerical experiments in 2D and 3D concerning denoising, inpainting, and feature extraction, comparing the performance of ShearLab 3D with similar transform-based algorithms such as curvelets, contourlets, or surfacelets. In the spirit of reproducible research, all scripts are accessible on www.ShearLab.org.

[1]  Demetrio Labate,et al.  Optimally Sparse Representations of 3D Data with C2 Surface Singularities Using Parseval Frames of Shearlets , 2012, SIAM J. Math. Anal..

[2]  Felix J. Herrmann,et al.  Curvelet-based seismic data processing : A multiscale and nonlinear approach , 2008 .

[3]  T. Blumensath,et al.  Theory and Applications , 2011 .

[4]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[5]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[6]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[7]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[8]  Karen O. Egiazarian,et al.  Video Denoising, Deblocking, and Enhancement Through Separable 4-D Nonlocal Spatiotemporal Transforms , 2012, IEEE Transactions on Image Processing.

[9]  Minh N. Do,et al.  Multidimensional Directional Filter Banks and Surfacelets , 2007, IEEE Transactions on Image Processing.

[10]  E. Candès New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .

[11]  Wang-Q Lim,et al.  Nonseparable Shearlet Transform , 2013, IEEE Transactions on Image Processing.

[12]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[13]  Gitta Kutyniok,et al.  Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..

[14]  Wang-Q Lim,et al.  The Discrete Shearlet Transform: A New Directional Transform and Compactly Supported Shearlet Frames , 2010, IEEE Transactions on Image Processing.

[15]  Xiaosheng Zhuang,et al.  ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm , 2011, SIAM J. Imaging Sci..

[16]  Gitta Kutyniok,et al.  Parabolic Molecules , 2012, Found. Comput. Math..

[17]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[18]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[19]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  S. Mallat A wavelet tour of signal processing , 1998 .

[21]  L. Schumaker,et al.  Curves and Surfaces , 1991, Lecture Notes in Computer Science.

[22]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[23]  Michael Elad,et al.  MCALab: Reproducible Research in Signal and Image Decomposition and Inpainting , 2010, Computing in Science & Engineering.

[24]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[25]  Gitta Kutyniok,et al.  Asymptotic Analysis of Inpainting via Universal Shearlet Systems , 2014, SIAM J. Imaging Sci..

[26]  Wang-Q Lim,et al.  Optimal Compressive Imaging of Fourier Data , 2015, SIAM J. Imaging Sci..

[27]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[28]  Wang-Q Lim,et al.  Optimally Sparse Approximations of 3D Functions by Compactly Supported Shearlet Frames , 2011, SIAM J. Math. Anal..

[29]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[30]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[31]  D. Labate,et al.  Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .

[32]  Mohamed-Jalal Fadili,et al.  3-D Data Denoising and Inpainting with the Low-Redundancy Fast Curvelet Transform , 2010, Journal of Mathematical Imaging and Vision.

[33]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[34]  Gitta Kutyniok,et al.  Introduction to Shearlets , 2012 .

[35]  Gabriele Steidl,et al.  Convex multiclass segmentation with shearlet regularization , 2011, Int. J. Comput. Math..

[36]  Wang-Q Lim,et al.  Image Separation Using Wavelets and Shearlets , 2010, Curves and Surfaces.

[37]  Karlheinz Gröchenig,et al.  Acceleration of the frame algorithm , 1993, IEEE Trans. Signal Process..

[38]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[39]  Mark J. T. Smith,et al.  A filter bank for the directional decomposition of images: theory and design , 1992, IEEE Trans. Signal Process..

[40]  C. Bachoc,et al.  Applied and Computational Harmonic Analysis Tight P-fusion Frames , 2022 .

[41]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[42]  Bin Han,et al.  Adaptive Multiresolution Analysis Structures and Shearlet Systems , 2011, SIAM J. Numer. Anal..

[43]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[44]  MalekiArian,et al.  Reproducible Research in Computational Harmonic Analysis , 2009 .

[45]  Arian Maleki,et al.  Reproducible Research in Computational Harmonic Analysis , 2009, Computing in Science & Engineering.

[46]  G. Kutyniok,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.

[47]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[48]  Jean-Luc Starck,et al.  3D curvelet transforms and astronomical data restoration , 2010, Applied and Computational Harmonic Analysis.

[49]  Sören Häuser,et al.  Fast Finite Shearlet Transform: a tutorial , 2012 .

[50]  Pooran Singh Negi,et al.  3-D Discrete Shearlet Transform and Video Processing , 2012, IEEE Transactions on Image Processing.