Ultraviolet photodissociation dynamics of trichloroethylene at 235 nm

[1]  T. Bandyopadhyay,et al.  Photodissociation dynamics of phosphorus trichloride (PCl3) at 235 nm using resonance enhanced multiphoton ionization (REMPI) with time-of-flight (TOF) mass spectrometry. , 2010, The journal of physical chemistry. A.

[2]  H. Nakatsuji,et al.  Electronic transitions in cis- and trans-dichloroethylenes and tetrachloroethylene. , 2008, The Journal of chemical physics.

[3]  P. Das,et al.  Photodissociation of isomeric dichloroethylenes in the ultraviolet: Effect of the second chlorine atom substitution on the dynamics , 2006 .

[4]  K. Jung,et al.  Br(2Pj) and Cl(2Pj) atom formation dynamics of allyl bromide and chloride at 234 nm , 2001 .

[5]  Everett L. Shock,et al.  Halocarbons in the environment: Estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings , 1999 .

[6]  S. North,et al.  Photodissociation dynamics of CH2BrCl studied using resonance enhanced multiphoton ionization (REMPI) with time-of-flight mass spectrometry , 1999 .

[7]  Y. Lee,et al.  The near ultraviolet dissociation dynamics of azomethane: Correlated V-T energy disposal and product appearance times , 1998 .

[8]  G. Hall,et al.  Resonance enhanced multiphoton ionization time-of-flight study of CF2I2 photodissociation , 1998 .

[9]  Ya-Rong Lee,et al.  The C–Cl bond fissions from the photolysis of CHCl=CCl2 at 193 nm , 1998 .

[10]  S. North,et al.  Nonintuitive Asymmetry in the Three-Body Photodissociation of CH3COCN , 1997 .

[11]  K. Yamashita,et al.  C-CL BOND RUPTURE IN ULTRAVIOLET PHOTODISSOCIATION OF VINYL CHLORIDE , 1997 .

[12]  Kei Sato,et al.  Translational energy distributions of the products of the 193 and 157 nm photodissociation of chloroethylenes , 1997 .

[13]  T. L. Myers,et al.  Investigating conformation dependence and nonadiabatic effects in the photodissociation of allyl chloride at 193 nm , 1996 .

[14]  R. Field,et al.  Electronic control of the spin–orbit branching ratio in the photodissociation and predissociation of HCl , 1995 .

[15]  M. Anderson,et al.  An Experimental and Theoretical Study of the Reaction Mechanism of the Photoassisted Catalytic Degradation of Trichloroethylene in the Gas Phase , 1995 .

[16]  K. Yokoyama,et al.  The mechanism of the unimolecular dissociation of trichloroethylene CHCl=CCl2 in the ground electronic state , 1995 .

[17]  G. Gribble The natural production of chlorinated compounds. , 1994, Environmental science & technology.

[18]  M. Kawasaki,et al.  Mechanism of the ultraviolet photodissociation of chloroethylenes determined from the Doppler profiles, spatial anisotropy, and power dependence of the photofragments , 1992 .

[19]  J. Muckerman Information theoretic prior functions for large molecular systems , 1989 .

[20]  J. Huber,et al.  Sub‐Doppler laser‐induced fluorescence measurements of the velocity distribution and rotational alignment of NO photofragments , 1986 .

[21]  U. Nagashima,et al.  Photofragmentation of mono‐ and dichloroethylenes: Translational energy measurements of recoiling Cl and HCl fragments , 1985 .

[22]  R. Zare,et al.  State‐selected photodissociation dynamics: Complete characterization of the OH fragment ejected by the HONO Ã state , 1984 .

[23]  A. Tuck Molecular beam studies of ethyl nitrite photodissociation , 1977 .

[24]  M. Berry The chloroethylene photochemical lasers: Vibrational energy content of the HCl molecular elimination products , 1974, IEEE Journal of Quantum Electronics.

[25]  C. Klots Thermochemical and kinetic information from metastable decompositions of ions , 1973 .

[26]  Kent R. Wilson,et al.  Excited fragments from excited molecules: energy partitioning in the photodissociation of alkyl iodides , 1972 .

[27]  I. Mclaren,et al.  TIME-OF-FLIGHT MASS SPECTROMETER WITH IMPROVED RESOLUTION , 1955 .