A Piezoelectric-Driven Linear Actuator by Means of Coupling Motion

A piezoelectric-driven actuator based on coupling motion has been proposed and tested to achieve a large linear working stroke with high resolution. “Z-shaped” flexure hinges are exploited for the symmetric flexure hinge mechanism to reduce the structural stress. Coupling motion is obtained by placing this symmetric flexure hinge mechanism with an angle of <inline-formula><tex-math notation="LaTeX">$\theta =20^\circ $</tex-math></inline-formula> to the slider. Experimental results indicate that linear motion with a large working stroke is effectively obtained by this coupling motion; the maximum motion speed is <inline-formula><tex-math notation="LaTeX">$V_{s}=$</tex-math> </inline-formula> 6057 μm/s and the maximum output force is <inline-formula><tex-math notation="LaTeX">$F_{g}=$ </tex-math></inline-formula> 350 g. Additionally, the influences of input frequency <inline-formula> <tex-math notation="LaTeX">$f$</tex-math></inline-formula> and input voltage <inline-formula><tex-math notation="LaTeX"> $U_{e}$</tex-math></inline-formula> are investigated, and the system kinetic model is established to better analyze the performance of this designed piezoelectric-driven linear actuator.

[1]  Xiaoniu Li,et al.  A novel piezoelectric actuator with a screw-coupled stator and rotor for driving an aperture , 2016 .

[2]  T. Morita,et al.  A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (/spl phi/2.4 mm, L=10 mm stator transducer) , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  Lei Zhu,et al.  Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-/nanomachining , 2014 .

[4]  Jim Euchner Design , 2014, Catalysis from A to Z.

[5]  Jonathan Kofman,et al.  Teleoperation of a robot manipulator using a vision-based human-robot interface , 2005, IEEE Transactions on Industrial Electronics.

[6]  Hongwei Zhao,et al.  Design and experimental research of an improved stick–slip type piezo-driven linear actuator , 2015 .

[7]  Hengyu Li,et al.  A Novel Trapezoid-Type Stick–Slip Piezoelectric Linear Actuator Using Right Circular Flexure Hinge Mechanism , 2017, IEEE Transactions on Industrial Electronics.

[8]  Han Qu,et al.  A piezoelectric-driven rotary actuator by means of inchworm motion , 2013 .

[9]  Long Lin,et al.  Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor , 2013 .

[10]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[11]  Guangbo Hao,et al.  Understanding coupled factors that affect the modelling accuracy of typical planar compliant mechanisms , 2016 .

[12]  Hongwei Zhao,et al.  Development of a compact 2-DOF precision piezoelectric positioning platform based on inchworm principle , 2015 .

[13]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[14]  Yonggang Huang,et al.  Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. , 2015, Nature materials.

[15]  Yonggang Huang,et al.  Transient, biocompatible electronics and energy harvesters based on ZnO. , 2013, Small.

[16]  Sang-Chae Kim,et al.  Precise rotary motor by inchworm motion using dual wrap belts , 1999 .

[17]  Zhaoying Zhou,et al.  Design calculations for flexure hinges , 2002 .

[18]  Tatsuo Arai,et al.  Development of a micro-manipulation system having a two-fingered micro-hand , 1999, IEEE Trans. Robotics Autom..

[19]  K. Uchino,et al.  A 1.6-mm, metal tube ultrasonic motor , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  David Zhang,et al.  Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation , 2011 .

[21]  Nicolae Lobontiu,et al.  Design of Circular Cross-Section Corner-Filleted Flexure Hinges for Three-Dimensional Compliant Mechanisms , 2002 .

[22]  J Y Peng,et al.  Modeling of Piezoelectric-Driven Stick–Slip Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[23]  Seung-Bok Choi,et al.  Piezoelectric Actuators: Control Applications of Smart Materials , 2010 .

[24]  Qingsong Xu,et al.  Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation , 2015, IEEE Transactions on Industrial Electronics.

[25]  Zhang Yi,et al.  Vision-Servo System for Automated Cell Injection , 2009, IEEE Transactions on Industrial Electronics.

[26]  M J Rost,et al.  Improving the accuracy of walking piezo motors. , 2014, The Review of scientific instruments.

[27]  Tarek Mohammad,et al.  Design and Assessment of a Z-Axis Precision Positioning Stage With Centimeter Range Based on a Piezoworm Motor , 2015, IEEE/ASME Transactions on Mechatronics.