Unified Correspondence as a Proof-Theoretic Tool

The present paper aims at establishing formal connections between correspondence phenomena, well known from the area of modal logic, and the theory of display calculi, originated by Belnap. These connections have been seminally observed and exploited by Marcus Kracht, in the context of his characterization of the modal axioms (which he calls primitive formulas) which can be effectively transformed into `analytic' structural rules of display calculi. In this context, a rule is `analytic' if adding it to a display calculus preserves Belnap's cut-elimination theorem. In recent years, the state-of-the-art in correspondence theory has been uniformly extended from classical modal logic to diverse families of nonclassical logics, ranging from (bi-)intuitionistic (modal) logics, linear, relevant and other substructural logics, to hybrid logics and mu-calculi. This generalization has given rise to a theory called unified correspondence, the most important technical tools of which are the algorithm ALBA, and the syntactic characterization of Sahlqvist-type classes of formulas and inequalities which is uniform in the setting of normal DLE-logics (logics the algebraic semantics of which is based on bounded distributive lattices). We apply unified correspondence theory, with its tools and insights, to extend Kracht's results and prove his claims in the setting of DLE-logics. The results of the present paper characterize the space of properly displayable DLE-logics.

[1]  Kazushige Terui,et al.  Expanding the Realm of Systematic Proof Theory , 2009, CSL.

[2]  Alessandra Palmigiano,et al.  Algebraic Semantics and Model Completeness for Intuitionistic Public Announcement Logic , 2011, LORI.

[3]  Sara Negri,et al.  Proof Analysis in Modal Logic , 2005, J. Philos. Log..

[4]  Viorica Sofronie-Stokkermans Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics II , 2000, Stud Logica.

[5]  Alessandra Palmigiano,et al.  Jónsson-style canonicity for ALBA-inequalities , 2017, J. Log. Comput..

[6]  Gisèle Fischer Servi,et al.  Semantics for a Class of Intuitionistic Modal Calculi , 1980 .

[7]  Kazushige Terui,et al.  From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[8]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[9]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[10]  Fan Yang,et al.  A Multi-type Calculus for Inquisitive Logic , 2016, WoLLIC.

[11]  Alessandra Palmigiano,et al.  THE LOGIC OF RESOURCES AND CAPABILITIES , 2016, The Review of Symbolic Logic.

[12]  Björn Lellmann,et al.  Axioms vs Hypersequent Rules with Context Restrictions: Theory and Applications , 2014, IJCAR.

[13]  B. D. ten Cate,et al.  Sahlqvist theory for hybrid logic , 2004 .

[14]  M. Chiara Italian Studies in the Philosophy of Science , 1981 .

[15]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..

[16]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[17]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..

[18]  Alessandra Palmigiano,et al.  Multi-type display calculus for dynamic epistemic logic , 2016, J. Log. Comput..

[19]  Willem Conradie,et al.  Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.

[20]  Willem Conradie,et al.  Constructive Canonicity for Lattice-Based Fixed Point Logics , 2016, WoLLIC.

[21]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[22]  H. Wansing Displaying Modal Logic , 1998 .

[23]  Willem Conradie,et al.  Canonicity results for mu-calculi: an algorithmic approach , 2017, J. Log. Comput..

[24]  Peter Schroeder-Heister,et al.  Validity Concepts in Proof-theoretic Semantics , 2006, Synthese.

[25]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[26]  Lutz Straßburger,et al.  Label-free Modular Systems for Classical and Intuitionistic Modal Logics , 2014, Advances in Modal Logic.

[27]  Willem Conradie,et al.  Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.

[28]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[29]  Dirk Pattinson,et al.  Correspondence between Modal Hilbert Axioms and Sequent Rules with an Application to S5 , 2013, TABLEAUX.

[30]  Rajeev Goré,et al.  Dual Intuitionistic Logic Revisited , 2000, TABLEAUX.

[31]  Willem Conradie,et al.  Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.

[32]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[33]  Naoki Kobayashi,et al.  Resource Usage Analysis for the Pi-Calculus , 2006, VMCAI.

[34]  Greg Restall,et al.  An Introduction to Substructural Logics , 2000 .

[35]  Nuel Belnap,et al.  Linear Logic Displayed , 1989, Notre Dame J. Formal Log..

[36]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[37]  Viorica Sofronie-Stokkermans,et al.  Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I , 2000, Stud Logica.

[38]  Willem Conradie,et al.  Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..

[39]  Frank Wolter,et al.  Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .

[40]  M. Kracht Power and Weakness of the Modal Display Calculus , 1996 .

[41]  Rajeev Goré,et al.  Substructural Logics on Display , 1998, Log. J. IGPL.

[42]  Alessandra Palmigiano,et al.  A proof-theoretic semantic analysis of dynamic epistemic logic , 2016, J. Log. Comput..

[43]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[44]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..

[45]  Alessandra Palmigiano,et al.  Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic , 2011, Ann. Pure Appl. Log..

[46]  Willem Conradie,et al.  Constructive Canonicity of Inductive Inequalities , 2016, Log. Methods Comput. Sci..

[47]  Willem Conradie,et al.  Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..

[48]  Alessandra Palmigiano,et al.  Multi-type Sequent Calculi , 2016 .

[49]  Willem Conradie,et al.  On Sahlqvist theory for hybrid logics , 2015, J. Log. Comput..

[50]  Rajeev Goré,et al.  On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics , 2011, Log. Methods Comput. Sci..

[51]  Haskell B. Curry,et al.  Foundations of Mathematical Logic , 1964 .

[52]  Alessandra Palmigiano,et al.  Multi-type display calculus for propositional dynamic logic , 2016, J. Log. Comput..

[53]  Revantha Ramanayake,et al.  Power and Limits of Structural Display Rules , 2016, ACM Trans. Comput. Log..

[54]  Rajeev Goré,et al.  Gaggles, Gentzen and Galois: How to display your favourite substructural logic , 1998, Logic Journal of the IGPL.

[55]  Willem Conradie,et al.  Sahlqvist via Translation , 2016, Log. Methods Comput. Sci..

[56]  Fan Yang,et al.  Structural Multi-type Sequent Calculus for Inquisitive Logic , 2016, ArXiv.

[57]  Alessandra Palmigiano,et al.  Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..

[58]  Revantha Ramanayake,et al.  Structural Extensions of Display Calculi: A General Recipe , 2013, WoLLIC.

[59]  Nick Bezhanishvili,et al.  Finitely generated free Heyting algebras via Birkhoff duality and coalgebra , 2011, Log. Methods Comput. Sci..

[60]  Alessandra Palmigiano,et al.  Dual characterizations for finite lattices via correspondence theory for monotone modal logic , 2014, J. Log. Comput..

[61]  Ori Lahav,et al.  From Frame Properties to Hypersequent Rules in Modal Logics , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[62]  Kazushige Terui,et al.  Algebraic proof theory for substructural logics: Cut-elimination and completions , 2012, Ann. Pure Appl. Log..

[63]  Don Ramanayake,et al.  Cut-elimination for provability logics and some results in display logic , 2011 .

[64]  G. Servi On modal logic with an intuitionistic base , 1977 .