Unified Correspondence as a Proof-Theoretic Tool
暂无分享,去创建一个
Alessandra Palmigiano | Giuseppe Greco | Minghui Ma | Apostolos Tzimoulis | Zhiguang Zhao | Minghui Ma | Alessandra Palmigiano | Zhiguang Zhao | G. Greco | A. Tzimoulis | A. Palmigiano
[1] Kazushige Terui,et al. Expanding the Realm of Systematic Proof Theory , 2009, CSL.
[2] Alessandra Palmigiano,et al. Algebraic Semantics and Model Completeness for Intuitionistic Public Announcement Logic , 2011, LORI.
[3] Sara Negri,et al. Proof Analysis in Modal Logic , 2005, J. Philos. Log..
[4] Viorica Sofronie-Stokkermans. Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics II , 2000, Stud Logica.
[5] Alessandra Palmigiano,et al. Jónsson-style canonicity for ALBA-inequalities , 2017, J. Log. Comput..
[6] Gisèle Fischer Servi,et al. Semantics for a Class of Intuitionistic Modal Calculi , 1980 .
[7] Kazushige Terui,et al. From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[8] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[9] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[10] Fan Yang,et al. A Multi-type Calculus for Inquisitive Logic , 2016, WoLLIC.
[11] Alessandra Palmigiano,et al. THE LOGIC OF RESOURCES AND CAPABILITIES , 2016, The Review of Symbolic Logic.
[12] Björn Lellmann,et al. Axioms vs Hypersequent Rules with Context Restrictions: Theory and Applications , 2014, IJCAR.
[13] B. D. ten Cate,et al. Sahlqvist theory for hybrid logic , 2004 .
[14] M. Chiara. Italian Studies in the Philosophy of Science , 1981 .
[15] Nuel Belnap,et al. Display logic , 1982, J. Philos. Log..
[16] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[17] Willem Conradie,et al. Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..
[18] Alessandra Palmigiano,et al. Multi-type display calculus for dynamic epistemic logic , 2016, J. Log. Comput..
[19] Willem Conradie,et al. Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.
[20] Willem Conradie,et al. Constructive Canonicity for Lattice-Based Fixed Point Logics , 2016, WoLLIC.
[21] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[22] H. Wansing. Displaying Modal Logic , 1998 .
[23] Willem Conradie,et al. Canonicity results for mu-calculi: an algorithmic approach , 2017, J. Log. Comput..
[24] Peter Schroeder-Heister,et al. Validity Concepts in Proof-theoretic Semantics , 2006, Synthese.
[25] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[26] Lutz Straßburger,et al. Label-free Modular Systems for Classical and Intuitionistic Modal Logics , 2014, Advances in Modal Logic.
[27] Willem Conradie,et al. Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.
[28] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[29] Dirk Pattinson,et al. Correspondence between Modal Hilbert Axioms and Sequent Rules with an Application to S5 , 2013, TABLEAUX.
[30] Rajeev Goré,et al. Dual Intuitionistic Logic Revisited , 2000, TABLEAUX.
[31] Willem Conradie,et al. Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.
[32] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[33] Naoki Kobayashi,et al. Resource Usage Analysis for the Pi-Calculus , 2006, VMCAI.
[34] Greg Restall,et al. An Introduction to Substructural Logics , 2000 .
[35] Nuel Belnap,et al. Linear Logic Displayed , 1989, Notre Dame J. Formal Log..
[36] Yde Venema,et al. A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..
[37] Viorica Sofronie-Stokkermans,et al. Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I , 2000, Stud Logica.
[38] Willem Conradie,et al. Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..
[39] Frank Wolter,et al. Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .
[40] M. Kracht. Power and Weakness of the Modal Display Calculus , 1996 .
[41] Rajeev Goré,et al. Substructural Logics on Display , 1998, Log. J. IGPL.
[42] Alessandra Palmigiano,et al. A proof-theoretic semantic analysis of dynamic epistemic logic , 2016, J. Log. Comput..
[43] Heinrich Wansing,et al. Sequent Systems for Modal Logics , 2002 .
[44] Willem Conradie,et al. Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..
[45] Alessandra Palmigiano,et al. Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic , 2011, Ann. Pure Appl. Log..
[46] Willem Conradie,et al. Constructive Canonicity of Inductive Inequalities , 2016, Log. Methods Comput. Sci..
[47] Willem Conradie,et al. Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..
[48] Alessandra Palmigiano,et al. Multi-type Sequent Calculi , 2016 .
[49] Willem Conradie,et al. On Sahlqvist theory for hybrid logics , 2015, J. Log. Comput..
[50] Rajeev Goré,et al. On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics , 2011, Log. Methods Comput. Sci..
[51] Haskell B. Curry,et al. Foundations of Mathematical Logic , 1964 .
[52] Alessandra Palmigiano,et al. Multi-type display calculus for propositional dynamic logic , 2016, J. Log. Comput..
[53] Revantha Ramanayake,et al. Power and Limits of Structural Display Rules , 2016, ACM Trans. Comput. Log..
[54] Rajeev Goré,et al. Gaggles, Gentzen and Galois: How to display your favourite substructural logic , 1998, Logic Journal of the IGPL.
[55] Willem Conradie,et al. Sahlqvist via Translation , 2016, Log. Methods Comput. Sci..
[56] Fan Yang,et al. Structural Multi-type Sequent Calculus for Inquisitive Logic , 2016, ArXiv.
[57] Alessandra Palmigiano,et al. Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..
[58] Revantha Ramanayake,et al. Structural Extensions of Display Calculi: A General Recipe , 2013, WoLLIC.
[59] Nick Bezhanishvili,et al. Finitely generated free Heyting algebras via Birkhoff duality and coalgebra , 2011, Log. Methods Comput. Sci..
[60] Alessandra Palmigiano,et al. Dual characterizations for finite lattices via correspondence theory for monotone modal logic , 2014, J. Log. Comput..
[61] Ori Lahav,et al. From Frame Properties to Hypersequent Rules in Modal Logics , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
[62] Kazushige Terui,et al. Algebraic proof theory for substructural logics: Cut-elimination and completions , 2012, Ann. Pure Appl. Log..
[63] Don Ramanayake,et al. Cut-elimination for provability logics and some results in display logic , 2011 .
[64] G. Servi. On modal logic with an intuitionistic base , 1977 .