An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: The importance of selective blood-brain barrier uptake.

[1]  R. I. Jølck,et al.  Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood–brain barrier and glioma cells , 2015, International journal of nanomedicine.

[2]  B. Sarmento,et al.  New trends in guided nanotherapies for digestive cancers: A systematic review. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[3]  H. Steinbusch,et al.  Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA , 2015, PloS one.

[4]  Louise van der Weerd,et al.  Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[5]  Igor L. Medintz,et al.  Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis? , 2015, Accounts of chemical research.

[6]  Y. Kuo,et al.  Rescuing apoptotic neurons in Alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin , 2015, International journal of nanomedicine.

[7]  D. Yan,et al.  Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers , 2015 .

[8]  H. Santos,et al.  Safety and toxicity concerns of orally delivered nanoparticles as drug carriers , 2015, Expert opinion on drug metabolism & toxicology.

[9]  E. Shusta,et al.  Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. , 2015, Annual review of pharmacology and toxicology.

[10]  Pieter Vader,et al.  Extracellular vesicles as drug delivery systems: lessons from the liposome field. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[11]  I. Zuhorn,et al.  Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier , 2014, Pharmaceutics.

[12]  J. M. Marchetti,et al.  Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. , 2014, Colloids and surfaces. B, Biointerfaces.

[13]  Alexander V Kabanov,et al.  Agile delivery of protein therapeutics to CNS. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[14]  Jose Vicente Lafuente,et al.  Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease , 2014, International journal of nanomedicine.

[15]  Pascal Tétreault,et al.  Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. , 2014, The Journal of clinical investigation.

[16]  H. Galla,et al.  Comparison of Five Peptide Vectors for Improved Brain Delivery of the Lysosomal Enzyme Arylsulfatase A , 2014, The Journal of Neuroscience.

[17]  A. Azadi,et al.  Methotrexate-loaded chitosan nanogels as 'Trojan Horses' for drug delivery to brain: preparation and in vitro/in vivo characterization. , 2013, International journal of biological macromolecules.

[18]  M. Leboyer,et al.  Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders , 2013, Front. Genet..

[19]  V. Torchilin,et al.  Current trends in the use of liposomes for tumor targeting. , 2013, Nanomedicine.

[20]  C. Kirkpatrick,et al.  Uptake of poly(2-hydroxypropylmethacrylamide)-coated gold nanoparticles in microvascular endothelial cells and transport across the blood-brain barrier. , 2013, Biomaterials science.

[21]  M. Möller,et al.  Mild oxidation of thiofunctional polymers to cytocompatible and stimuli-sensitive hydrogels and nanogels. , 2013, Macromolecular bioscience.

[22]  J. Groll,et al.  Embedding of Active Proteins and Living Cells in Redox-Sensitive Hydrogels and Nanogels through Enzymatic Cross-Linking , 2013, Angewandte Chemie.

[23]  Christina Graf,et al.  Multivalency as a chemical organization and action principle. , 2012, Angewandte Chemie.

[24]  Svetlana Gelperina,et al.  Transport of drugs across the blood-brain barrier by nanoparticles. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[25]  Jiaming Zhuang,et al.  Polymer nanogels: a versatile nanoscopic drug delivery platform. , 2012, Advanced drug delivery reviews.

[26]  T. Mészáros,et al.  Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[27]  C. Kirkpatrick,et al.  Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins , 2012, Archives of Toxicology.

[28]  Jayant Khandare,et al.  Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. , 2012, Chemical Society reviews.

[29]  Wim E Hennink,et al.  Hydrogels for protein delivery. , 2012, Chemical reviews.

[30]  F. Alexis,et al.  Stimulus responsive nanogels for drug delivery , 2011 .

[31]  F. Guillemin,et al.  Stability of peptides and therapeutic success in cancer , 2011, Expert opinion on drug metabolism & toxicology.

[32]  Z. Sideratou,et al.  Drug delivery using multifunctional dendrimers and hyperbranched polymers , 2010, Expert opinion on drug delivery.

[33]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[34]  Marcelo Calderón,et al.  Dendritic Polyglycerols for Biomedical Applications , 2010, Advanced materials.

[35]  M. Moeller,et al.  Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion , 2009 .

[36]  H. Steinbusch,et al.  Delivery of peptide and protein drugs over the blood–brain barrier , 2009, Progress in Neurobiology.

[37]  W. D. de Jong,et al.  Drug delivery and nanoparticles: Applications and hazards , 2008, International journal of nanomedicine.

[38]  Michel Demeule,et al.  Identification and Design of Peptides as a New Drug Delivery System for the Brain , 2008, Journal of Pharmacology and Experimental Therapeutics.

[39]  K. Letchford,et al.  A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[40]  J. Greenwood,et al.  Blood‐brain barrier‐specific properties of a human adult brain endothelial cell line , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  J. Kreuter Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. , 2004, Journal of nanoscience and nanotechnology.

[42]  J. Fazakerley Pathogenesis of Semliki Forest Virus Encephalitis , 2022 .

[43]  Alexander V Kabanov,et al.  Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. , 2002, Advanced drug delivery reviews.

[44]  J. Kreuter,et al.  Nanoparticulate systems for brain delivery of drugs. , 2001, Advanced drug delivery reviews.

[45]  William Couet,et al.  Indirect Evidence that Drug Brain Targeting Using Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles Is Related to Toxicity , 1999, Pharmaceutical Research.

[46]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[47]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[48]  D. A. Kharkevich,et al.  Delivery of Loperamide Across the Blood-Brain Barrier with Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles , 1997, Pharmaceutical Research.

[49]  W. Pardridge Recent developments in peptide drug delivery to the brain. , 1992, Pharmacology & toxicology.

[50]  B. Nichols,et al.  Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells , 2006, Nature Cell Biology.

[51]  J. Fréchet,et al.  Dendrimers and dendritic polymers in drug delivery. , 2005, Drug discovery today.

[52]  Jean M. J. Fréchet,et al.  Dendrimers and other dendritic polymers , 2001 .

[53]  D. A. Kharkevich,et al.  Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. , 1998, Journal of microencapsulation.