LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks

We present a new sample of galaxy-scale strong gravitational lens candidates, selected from 904 deg2 of Data Release 4 of the Kilo-Degree Survey, i.e. the ‘Lenses in the Kilo-Degree Survey’ (LinKS) sample. We apply two convolutional neural networks (ConvNets) to ∼88000 colour–magnitude-selected luminous red galaxies yielding a list of 3500 strong lens candidates. This list is further downselected via human inspection. The resulting LinKS sample is composed of 1983 rank-ordered targets classified as ‘potential lens candidates’ by at least one inspector. Of these, a high-grade subsample of 89 targets is identified with potential strong lenses by all inspectors. Additionally, we present a collection of another 200 strong lens candidates discovered serendipitously from various previous ConvNet runs. A straightforward application of our procedure to future Euclid or Large Synoptic Survey Telescope data can select a sample of ∼3000 lens candidates with less than 10 per cent expected false positives and requiring minimal human intervention.

[1]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[2]  C. Alcock Gravitational lenses , 1982, Nature.

[3]  J. Gott,et al.  The Statistics of gravitational lenses: The Distributions of image angular separations and lens redshifts , 1984 .

[4]  M. Fukugita,et al.  Statistical properties of gravitational lenses with a nonzero cosmological constant , 1992 .

[5]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[6]  K. Gebhardt,et al.  The Quadruple Gravitational Lens PG 1115+080: Time Delays and Models , 1996, astro-ph/9611051.

[7]  C. Kochanek The Flat-Spectrum Radio Luminosity Function, Gravitational Lensing, Galaxy Ellipticities, and Cosmology , 1996, astro-ph/9611231.

[8]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[9]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[10]  G. Chabrier The Galactic Disk Mass Budget. I. Stellar Mass Function and Density , 2001 .

[11]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[12]  The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant , 2002, astro-ph/0210002.

[13]  Marco Saerens,et al.  Any reasonable cost function can be used for a posteriori probability approximation , 2002, IEEE Trans. Neural Networks.

[14]  K. Chae The Cosmic Lens All‐Sky Survey: statistical strong lensing, cosmological parameters, and global properties of galaxy populations , 2002, astro-ph/0211244.

[15]  The Cosmic Lens All-Sky Survey - II. Gravitational lens candidate selection and follow-up , 2002, astro-ph/0211069.

[16]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[17]  Automatic detection of arcs and arclets formed by gravitational lensing , 2003, astro-ph/0311554.

[18]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[19]  B. Flaugher The Dark Energy Survey , 2005 .

[20]  The Lensed Arc Production Efficiency of Galaxy Clusters: A Comparison of Matched Observed and Simulated Samples , 2005, astro-ph/0507454.

[21]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[22]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[23]  The image separation distribution of strong lenses: halo versus subhalo populations , 2005, astro-ph/0508528.

[24]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[25]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[26]  Automated detection of gravitational arcs , 2006, astro-ph/0606757.

[27]  Arcfinder: an algorithm for the automatic detection of gravitational arcs , 2006, astro-ph/0607547.

[28]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[29]  Gepi,et al.  The CFHTLS strong lensing legacy survey - I. Survey overview and T0002 release sample , 2006, astro-ph/0610362.

[30]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[31]  P. Hall,et al.  A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample , 2007, astro-ph/0701383.

[32]  Strong lensing statistics in large, z 0.2 surveys: bias in the lens galaxy population , 2006, astro-ph/0607032.

[33]  C. Kochanek,et al.  The Baryon Fractions and Mass-to-Light Ratios of Early-Type Galaxies , 2007, 0705.3647.

[34]  Ralf Bender,et al.  Astro-WISE: Chaining to the Universe , 2007 .

[35]  Jeffrey M. Kubo,et al.  A method to search for strong galaxy-galaxy lenses in optical imaging surveys , 2007, 0712.3063.

[36]  C. Fassnacht,et al.  Probing a massive radio galaxy with gravitational lensing , 2007, 0712.1145.

[37]  O. Wucknitz,et al.  A gravitationally lensed water maser in the early Universe , 2008, Nature.

[38]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .

[39]  A. Bolton,et al.  The Sloan Lens ACS Survey. VI. Discovery and Analysis of a Double Einstein Ring , 2008, 0801.1555.

[40]  Y. Mellier,et al.  First Catalog of Strong Lens Candidates in the COSMOS Field , 2008, 0802.2174.

[41]  M. Soares-Santos,et al.  2DPHOT: A Multi-Purpose Environment for the Two-Dimensional Analysis of Wide-Field Images , 2008 .

[42]  J. Kneib,et al.  The mass profile of early-type galaxies in overdense environments: the case of the double source-plane gravitational lens SL2SJ02176-0513 , 2009, 0902.4804.

[43]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.

[44]  A. Bolton,et al.  Two-dimensional kinematics of SLACS lenses - II. Combined lensing and dynamics analysis of early-type galaxies at z = 0.08-0.33 , 2009, 0904.3861.

[45]  L. Koopmans,et al.  Statistics of mass substructure from strong gravitational lensing: quantifying the mass fraction and mass function , 2009, 0903.4752.

[46]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[47]  A. Bolton,et al.  THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND ISOTROPY INSIDE ONE EFFECTIVE RADIUS , 2009, 0906.1349.

[48]  Crescenzo Tortora,et al.  Central mass-to-light ratios and dark matter fractions in early-type galaxies , 2009, 0901.3781.

[49]  S. More,et al.  The role of luminous substructure in the gravitational lens system MG 2016+112 , 2008, 0810.5341.

[50]  Cambridge,et al.  A Spatially Resolved Map of the Kinematics, Star-Formation and Stellar Mass Assembly in a Star-Forming Galaxy at z=4.9 , 2009, 0909.0111.

[51]  V. Belokurov,et al.  X-shooter observations of the gravitational lens system CASSOWARY 5★ , 2010, 1004.3546.

[52]  D. Sluse,et al.  Strong Lensing by Galaxies , 2010, 1003.5567.

[53]  P. P. van der Werf,et al.  The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies , 2010, Science.

[54]  Zurich,et al.  Constraining the low‐mass end of the initial mass function with gravitational lensing , 2010, 1008.4363.

[55]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[56]  A. Bolton,et al.  THE INITIAL MASS FUNCTION OF EARLY-TYPE GALAXIES , 2010 .

[57]  P. Jetzer,et al.  CENTRAL DARK MATTER TRENDS IN EARLY-TYPE GALAXIES FROM STRONG LENSING, DYNAMICS, AND STELLAR POPULATIONS , 2010, The Astrophysical Journal.

[58]  V. Cardone,et al.  Dark matter scaling relations in intermediate z haloes , 2010, 1007.3673.

[59]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[60]  R. Bender,et al.  GOLDEN GRAVITATIONAL LENSING SYSTEMS FROM THE SLOAN LENS ACS SURVEY. I. SDSS J1538+5817: ONE LENS FOR TWO SOURCES, , 2009, 0912.0744.

[61]  K. Jahnke,et al.  GRAVITATIONAL LENS CANDIDATES IN THE E-CDFS , 2011, 1104.0931.

[62]  T. Treu,et al.  The X-Shooter Lens Survey - I. Dark-Matter Domination and a Salpeter-type IMF in a Massive Early-type Galaxy , 2011, 1103.4773.

[63]  Edwin A. Valentijn,et al.  The Astro-WISE optical image pipeline , 2011, Experimental Astronomy.

[64]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[65]  A. Bolton,et al.  The SWELLS survey – I. A large spectroscopically selected sample of edge‐on late‐type lens galaxies , 2011, 1104.5663.

[66]  U. Utah,et al.  Two-dimensional kinematics of SLACS lenses – III. Mass structure and dynamics of early-type lens galaxies beyond z ≃ 0.1 , 2011, 1102.2261.

[67]  Lensed galaxies in CANDELS , 2011, 1110.3784.

[68]  J. Kneib,et al.  Discovery of a possibly old galaxy at z= 6.027, multiply imaged by the massive cluster Abell 383 , 2011, 1102.5092.

[69]  P. Marshall,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES , 2010, 1008.3167.

[70]  J. Frieman,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. V. FINAL CATALOG FROM THE SEVENTH DATA RELEASE , 2012, 1203.1087.

[71]  J. Kneib,et al.  The CFHTLS-Strong Lensing Legacy Survey (SL2S): Investigating the group-scale lenses with the SARCS sample , 2011, 1109.1821.

[72]  J. P. McKean,et al.  Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.

[73]  W. M. Wood-Vasey,et al.  THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT ∼0.5 , 2011, 1112.3683.

[74]  A. Bolton,et al.  The SWELLS survey. III. Disfavouring "heavy" initial mass functions for spiral lens galaxies , 2012, 1201.1677.

[75]  Mattia Fumagalli,et al.  3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847 , 2012 .

[76]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.

[77]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE , 2013, 1307.4759.

[78]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[79]  C. Lintott,et al.  Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.

[80]  S. Meyer,et al.  Dusty starburst galaxies in the early Universe as revealed by gravitational lensing , 2013, Nature.

[81]  P. Marshall,et al.  The preferentially magnified active nucleus in IRAS F10214+4724 - III. VLBI observations of the radio core , 2013, 1307.6566.

[82]  M. Auger,et al.  The CASSOWARY spectroscopy survey: A new sample of gravitationally lensed galaxies in SDSS , 2013, 1302.2663.

[83]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. III. LENS MODELS, SURFACE PHOTOMETRY, AND STELLAR MASSES FOR THE FINAL SAMPLE , 2013, 1307.4764.

[84]  L. Koopmans,et al.  A low-mass cut-off near the hydrogen burning limit for Salpeter-like initial mass functions in early-type galaxies , 2013, 1306.2635.

[85]  G. Seidel,et al.  Multi-colour detection of gravitational arcs , 2014 .

[86]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. XII. EXTENDING STRONG LENSING TO LOWER MASSES , 2014, 1407.2240.

[87]  M. Auger,et al.  Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.

[88]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8 , 2014, 1410.1881.

[89]  P. Marshall,et al.  RingFinder: AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN GROUND-BASED MULTI-FILTER IMAGING DATA , 2014, 1403.1041.

[90]  M. W. Auger,et al.  Detection of substructure with adaptive optics integral field spectroscopy of the gravitational lens B1422+231 , 2014 .

[91]  G. Meylan,et al.  A 7 deg2 survey for galaxy-scale gravitational lenses with the HST imaging archive , 2012, 1206.3412.

[92]  G. Meylan,et al.  A PCA-based automated finder for galaxy-scale strong lenses , 2014, 1403.1063.

[93]  P. Marshall,et al.  Chitah: STRONG-GRAVITATIONAL-LENS HUNTER IN IMAGING SURVEYS , 2014, 1411.5398.

[94]  T. Collett THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.

[95]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[96]  L. Koopmans,et al.  Are the total mass density and the low-mass end slope of the IMF anticorrelated? , 2015, 1505.07450.

[97]  E. Komatsu,et al.  Time-delay cosmography: increased leverage with angular diameter distances , 2015, 1509.03310.

[98]  R. Gavazzi,et al.  Extensive light profile fitting of galaxy-scale strong lenses. Towards an automated lens detection method , 2014, 1411.1265.

[99]  Brandon C. Kelly,et al.  Data mining for gravitationally lensed quasars , 2014, 1410.4565.

[100]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[101]  R. Gavazzi,et al.  COSMOLOGY WITH STRONG-LENSING SYSTEMS , 2015, 1509.07649.

[102]  U. California,et al.  The stellar initial mass function of early-type galaxies from low to high stellar velocity dispersion: homogeneous analysis of atlas3D and Sloan Lens ACS galaxies , 2014, 1407.5633.

[103]  Massimo Brescia,et al.  The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.

[104]  M. Radovich,et al.  Strong lens search in the ESO public Survey KiDS , 2015, 1507.00733.

[105]  M. Meneghetti,et al.  THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS , 2015, 1511.04002.

[106]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE , 2015, 1509.00475.

[107]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[108]  G. Bruzual,et al.  Strong gravitational lensing and the stellar IMF of early-type galaxies , 2015, 1512.00462.

[109]  Michael S. Lew,et al.  Deep learning for visual understanding: A review , 2016, Neurocomputing.

[110]  C. Lintott,et al.  Space Warps II. New gravitational lens candidates from the CFHTLS discovered through citizen science , 2015, 1504.05587.

[111]  C. Heymans,et al.  The 2-degree Field Lensing Survey: design and clustering measurements , 2016, 1608.02668.

[112]  M. Biesiada,et al.  Limits on the power-law mass and luminosity density profiles of elliptical galaxies from gravitational lensing systems , 2016, 1604.05625.

[113]  A. Bolton,et al.  THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE , 2016, 1608.08707.

[114]  John E. Carlstrom,et al.  DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81 , 2016, 1601.01388.

[115]  R. Ivison,et al.  TheHerschel-ATLAS: a sample of 500 μm-selected lensed galaxies over 600 deg2 , 2016, Monthly Notices of the Royal Astronomical Society.

[116]  Edwin Simpson,et al.  Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.

[117]  S. Cole,et al.  Constraints on the identity of the dark matter from strong gravitational lenses , 2015, 1512.06507.

[118]  S. Suyu,et al.  A SPECTROSCOPICALLY CONFIRMED DOUBLE SOURCE PLANE LENS SYSTEM IN THE HYPER SUPRIME-CAM SUBARU STRATEGIC PROGRAM , 2016, 1606.09363.

[119]  A. Walker,et al.  The Canarias Einstein Ring: a Newly Discovered Optical Einstein Ring , 2016, 1605.03938.

[120]  Research Center for the Early Universe,et al.  Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses , 2017, 1704.01585.

[121]  Karl Glazebrook,et al.  Finding strong lenses in CFHTLS using convolutional neural networks , 2017, 1704.02744.

[122]  N. R. Napolitano,et al.  The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.

[123]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[124]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[125]  Philip J. Tait,et al.  A new quadruple gravitational lens from the Hyper Suprime-Cam Survey: the puzzle of HSC J115252+004733 , 2016, 1608.06288.

[126]  Daniel Thomas,et al.  The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations , 2017 .

[127]  A. Fontana,et al.  First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon , 2016, 1610.03075.

[128]  Rémi Flamary,et al.  Support vector machine classification of strong gravitational lenses , 2017, 1705.08949.

[129]  A. Bolton,et al.  The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses , 2017, 1711.00072.

[130]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[131]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[132]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[133]  M. Maturi,et al.  EasyCritics – I. Efficient detection of strongly lensing galaxy groups and clusters in wide-field surveys , 2017, Monthly Notices of the Royal Astronomical Society.

[134]  A. Agnello,et al.  KiDS-SQuaD: The KiDS Strongly lensed Quasar Detection project , 2018, Monthly Notices of the Royal Astronomical Society.

[135]  A. Hopkins,et al.  Testing Convolutional Neural Networks for finding strong gravitational lenses in KiDS , 2018, Monthly Notices of the Royal Astronomical Society.

[136]  S. Bamford,et al.  Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2017, 1711.09139.

[137]  F. Bellagamba,et al.  SEAGLE – I. A pipeline for simulating and modelling strong lenses from cosmological hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[138]  T. Treu,et al.  Improving time-delay cosmography with spatially resolved kinematics , 2017, 1709.01517.

[139]  Timothy M. C. Abbott,et al.  Knowledge transfer of Deep Learning for galaxy morphology from one survey to another , 2018 .

[140]  A. Leauthaud,et al.  Evidence for radial variations in the stellar mass-to-light ratio of massive galaxies from weak and strong lensing , 2018, Monthly Notices of the Royal Astronomical Society.

[141]  Y. Shu,et al.  Strong-lensing measurement of the total-mass-density profile out to three effective radii for z ∼ 0.5 early-type galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[142]  E. Decenciere,et al.  Deep learning for galaxy surface brightness profile fitting , 2017, Monthly Notices of the Royal Astronomical Society.

[143]  A. Agnello,et al.  KiDS0239-3211: A New Gravitational Quadruple Lens Candidate , 2018, Research Notes of the AAS.

[144]  C. Fassnacht,et al.  Erratum: SHARP – V. Modelling gravitationally lensed radio arcs imaged with global VLBI observations , 2018, Monthly Notices of the Royal Astronomical Society.

[145]  A. Agnello,et al.  Bright lenses are easy to find: spectroscopic confirmation of lensed quasars in the Southern Sky , 2018, Monthly Notices of the Royal Astronomical Society.

[146]  G. Vernardos Microlensing flux ratio predictions for Euclid , 2018, Monthly Notices of the Royal Astronomical Society.

[147]  D. Gerdes,et al.  Transfer learning for galaxy morphology from one survey to another , 2018, Monthly Notices of the Royal Astronomical Society.

[148]  Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens , 2018 .

[149]  S. Suyu,et al.  Survey of Gravitationally Lensed Objects in HSC Imaging (SuGOHI). II. Environments and Line-of-Sight Structure of Strong Gravitational Lens Galaxies to z ∼ 0.8 , 2018, The Astrophysical Journal.

[150]  H. Hoekstra,et al.  Luminous red galaxies in the Kilo-Degree Survey: selection with broad-band photometry and weak lensing measurements , 2018, Monthly Notices of the Royal Astronomical Society.

[151]  M. Meneghetti,et al.  The strong gravitational lens finding challenge , 2018, Astronomy & Astrophysics.

[152]  A. K. Qin,et al.  Finding high-redshift strong lenses in DES using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[153]  R. Bouwens,et al.  RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies , 2017, The Astrophysical Journal.