Modular curves and the class group of Q(ςp)
暂无分享,去创建一个
[1] B. Mazur,et al. Rational isogenies of prime degree , 1978 .
[2] S. Lang,et al. Thep-primary component of the cuspidal divisor class group on the modular curveX(p) , 1978 .
[3] Barry Mazur,et al. Modular curves and the eisenstein ideal , 1977 .
[4] K. Ribet. A modular construction of unramifiedp-extensions ofQ(μp) , 1976 .
[5] R. Greenberg. On p-adic L-functions and cyclotomic fields , 1975, Nagoya Mathematical Journal.
[6] J. Coates,et al. On l-Adic Zeta Functions , 1973 .
[7] K. Iwasawa. On Z l -Extensions of Algebraic Number Fields , 1973 .
[8] Marvin Tretkoff,et al. Introduction to the Arithmetic Theory of Automorphic Functions , 1971 .
[9] J. Serre. Quelques Proprietes des Varietes Abeliennes en Caracteristique p , 1958 .
[10] G. Gras. Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés , 1977 .
[11] P. Deligne,et al. Les Schémas de Modules de Courbes Elliptiques , 1973 .
[12] F. Oort,et al. Group schemes of prime order , 1970 .
[13] D. Mumford,et al. The irreducibility of the space of curves of given genus , 1969 .
[14] J. W. S. Cassels,et al. Algebraic number theory : proceedings of an instructional conference organized by the London Mathematical Society (a Nato Advanced Study Institute) with the support of the International Mathematical Union , 1967 .
[15] R. Hartshorne. Residues And Duality , 1966 .
[16] K. Iwasawa. On some modules in the theory of cyclotomic fields , 1964 .
[17] Alexander Grothendieck,et al. Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents, Première partie , 1961 .
[18] A. Grothendieck,et al. Éléments de géométrie algébrique , 1960 .