Modular curves and the class group of Q(ςp)

[1]  B. Mazur,et al.  Rational isogenies of prime degree , 1978 .

[2]  S. Lang,et al.  Thep-primary component of the cuspidal divisor class group on the modular curveX(p) , 1978 .

[3]  Barry Mazur,et al.  Modular curves and the eisenstein ideal , 1977 .

[4]  K. Ribet A modular construction of unramifiedp-extensions ofQ(μp) , 1976 .

[5]  R. Greenberg On p-adic L-functions and cyclotomic fields , 1975, Nagoya Mathematical Journal.

[6]  J. Coates,et al.  On l-Adic Zeta Functions , 1973 .

[7]  K. Iwasawa On Z l -Extensions of Algebraic Number Fields , 1973 .

[8]  Marvin Tretkoff,et al.  Introduction to the Arithmetic Theory of Automorphic Functions , 1971 .

[9]  J. Serre Quelques Proprietes des Varietes Abeliennes en Caracteristique p , 1958 .

[10]  G. Gras Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés , 1977 .

[11]  P. Deligne,et al.  Les Schémas de Modules de Courbes Elliptiques , 1973 .

[12]  F. Oort,et al.  Group schemes of prime order , 1970 .

[13]  D. Mumford,et al.  The irreducibility of the space of curves of given genus , 1969 .

[14]  J. W. S. Cassels,et al.  Algebraic number theory : proceedings of an instructional conference organized by the London Mathematical Society (a Nato Advanced Study Institute) with the support of the International Mathematical Union , 1967 .

[15]  R. Hartshorne Residues And Duality , 1966 .

[16]  K. Iwasawa On some modules in the theory of cyclotomic fields , 1964 .

[17]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents, Première partie , 1961 .

[18]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .