Computing multidimensional Delaunay tessellations

We recall some properties of Voronoi and Delaunay tessellations in any numbers of dimensions. We then propose a solution to the following problem: Given the Delaunay tessellation of nd-dimensional data points X"1,..., X"n, the proble is to insert a new data point X and to update the tessellation accordingly. The solution proposed achieves minimum space-complexity.

[1]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[2]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[4]  Azriel Rosenfeld,et al.  Mosaic Models for Textures , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Makoto Nagao,et al.  A file organization for geographic information systems based on spatial proximity , 1983, Comput. Vis. Graph. Image Process..

[6]  Pierre A. Devijver,et al.  Insert and delete algorithms for maintaining dynamic Delaunay triangulations , 1982, Pattern Recognit. Lett..

[7]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[8]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[9]  Azriel Rosenfeld,et al.  Some Experiments with Mosaic Models for Images , 1980, IEEE Transactions on Systems, Man, and Cybernetics.