Human cardiac 31P magnetic resonance spectroscopy at 7 tesla

Phosphorus magnetic resonance spectroscopy (31P‐MRS) affords unique insight into cardiac energetics but has a low intrinsic signal‐to‐noise ratio (SNR) in humans. Theory predicts an increased 31P‐MRS SNR at 7T, offering exciting possibilities to better investigate cardiac metabolism. We therefore compare the performance of human cardiac 31P‐MRS at 7T to 3T, and measure T1s for 31P metabolites at 7T.

[1]  Stefan Neubauer,et al.  Inversion recovery at 7 T in the human myocardium: Measurement of T1, inversion efficiency and B1+ , 2013, Magnetic resonance in medicine.

[2]  J. Mallow,et al.  A form-fitted 3 channel 31P, two channel 1H transceive coil for calf muscle studies at 7 T , 2013 .

[3]  U. Dydak,et al.  Phosphorus liver MRSI at 3 T using a novel dual‐tuned eight‐channel 31P/1H coil , 2012, Magnetic resonance in medicine.

[4]  C. W. Hilbers,et al.  Letter to the editor: "Interpretation of (31)P NMR saturation transfer experiments: do not forget the spin relaxation properties". , 2012, American journal of physiology. Cell physiology.

[5]  Ewald Moser,et al.  7‐T MR—from research to clinical applications? , 2012, NMR in biomedicine.

[6]  M. Robson,et al.  Effects of Catecholamine Stress on Diastolic Function and Myocardial Energetics in Obesity , 2012, Circulation.

[7]  Jing-Huei Lee,et al.  Methods and Applications of Phosphorus NMR Spectroscopy In Vivo , 2012 .

[8]  C. W. Hilbers,et al.  Interpretation of 31P NMR saturation transfer experiments: do not forget the spin relaxation properties , 2012 .

[9]  S. Neubauer,et al.  Clinical cardiac magnetic resonance spectroscopy. , 2011, Progress in cardiovascular diseases.

[10]  W. Bogner,et al.  In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: A comparison between 3 T and 7 T , 2011, Magnetic resonance in medicine.

[11]  Thoralf Niendorf,et al.  Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla , 2010, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[12]  C. Hilbers,et al.  31P Saturation Transfer Spectroscopy Predicts Differential Intracellular Macromolecular Association of ATP and ADP in Skeletal Muscle* , 2010, The Journal of Biological Chemistry.

[13]  Michael Schär,et al.  Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics , 2010, Magnetic resonance in medicine.

[14]  Ewald Moser,et al.  Ultra-high-field magnetic resonance: Why and when? , 2010, World journal of radiology.

[15]  Paul A. Bottomley,et al.  NMR Spectroscopy of the Human Heart , 2009 .

[16]  Zenon Starčuk,et al.  Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package , 2009 .

[17]  S Trattnig,et al.  Assessment of 31P relaxation times in the human calf muscle: A comparison between 3 T and 7 T in vivo , 2009, Magnetic resonance in medicine.

[18]  M. Robson,et al.  Reproducibility of 31P cardiac magnetic resonance spectroscopy at 3 T , 2009, NMR in biomedicine.

[19]  Katherine C. Wu,et al.  Reduced Myocardial Creatine Kinase Flux in Human Myocardial Infarction: An In Vivo Phosphorus Magnetic Resonance Spectroscopy Study , 2009, Circulation.

[20]  M. Schär,et al.  Quantitative cardiac 31P spectroscopy at 3 Tesla using adiabatic pulses , 2009, Magnetic resonance in medicine.

[21]  Kieran Clarke,et al.  A comparison of cardiac 31P MRS at 1.5 and 3 T , 2008, NMR in biomedicine.

[22]  S. Neubauer,et al.  Detection of myocardial disorders by magnetic resonance spectroscopy , 2008, Nature Clinical Practice Cardiovascular Medicine.

[23]  Stefan Neubauer,et al.  The failing heart--an engine out of fuel. , 2007, The New England journal of medicine.

[24]  Roger Sauter,et al.  Introduction to Probability and Statistics for Engineers and Scientists , 2005, Technometrics.

[25]  Stefan Neubauer,et al.  Ultrashort TE chemical shift imaging (UTE‐CSI) , 2005, Magnetic resonance in medicine.

[26]  Ewald Moser,et al.  Relaxation times of 31P‐metabolites in human calf muscle at 3 T , 2003, Magnetic resonance in medicine.

[27]  P. Bottomley,et al.  Four‐angle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo , 2002, Magnetic resonance in medicine.

[28]  D van Ormondt,et al.  Cramér–Rao bounds: an evaluation tool for quantitation , 2001, NMR in biomedicine.

[29]  L DelaBarre,et al.  BISTRO: An outer‐volume suppression method that tolerates RF field inhomogeneity , 2001, Magnetic resonance in medicine.

[30]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[31]  S. Neubauer,et al.  31P-nuclear magnetic resonance spectroscopy of blood: a species comparison. , 2000, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[32]  T W Redpath,et al.  Estimating achievable signal-to-noise ratios of MRI transmit-receive coils from radiofrequency power measurements: applications in quality control. , 2000, Physics in medicine and biology.

[33]  S. Williams,et al.  In vivo NMR spectroscopy: Principles and techniques, R.A. de Graaf, Wiley, Chichester, 1998, Hardback £120 ISBN 0-471-98365-9 , 1999 .

[34]  Robin A. de Graaf,et al.  In Vivo NMR Spectroscopy , 2019 .

[35]  T. Redpath Signal-to-noise ratio in MRI. , 1998, The British journal of radiology.

[36]  Vanhamme,et al.  Improved method for accurate and efficient quantification of MRS data with use of prior knowledge , 1997, Journal of magnetic resonance.

[37]  Michael Garwood,et al.  Improved Performance of Frequency-Swept Pulses Using Offset-Independent Adiabaticity , 1996 .

[38]  T. Inubushi,et al.  Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. , 1995, Circulation.

[39]  Jullie W Pan,et al.  3D 31P Spectroscopic Imaging of the Human Heart at 4.1 T , 1995, Magnetic resonance in medicine.

[40]  C. V. van Echteld,et al.  Saturation correction in human cardiac 31P MR spectroscopy at 1.5 T , 1994, NMR in biomedicine.

[41]  P A Bottomley,et al.  Optimum flip‐angles for exciting NMR with uncertain T1 values , 1994, Magnetic resonance in medicine.

[42]  Paul A Bottomley,et al.  The Dual-Angle Method for Fast, Sensitive T1 Measurement in Vivo with Low-Angle Adiabatic Pulses , 1994 .

[43]  J. Ingwall,et al.  Pliosphocreatine T1 measurements with and without exchange in the heart , 1993, Magnetic resonance in medicine.

[44]  S. Nelson,et al.  Measurement of T1 relaxation times of cardiac phosphate metabolites using BIR‐4 adiabatic RF pulses and a variable nutation method , 1993, Magnetic resonance in medicine.

[45]  C J Hardy,et al.  An NMR Phased Array for Human Cardiac 31P Spectroscopy , 1992, Magnetic resonance in medicine.

[46]  K Uğurbil,et al.  31P NMR spectroscopy of the human heart at 4 T: Detection of substantially uncontaminated cardiac spectra and differentiation of subepicardium and subendocardium , 1992, Magnetic resonance in medicine.

[47]  A. Haase,et al.  Direct measurement of spin‐lattice relaxation times of Phosphorus Metabolites in Human Myocardium , 1992, Magnetic resonance in medicine.

[48]  C. Hardy,et al.  Correcting human heart 31P NMR spectra for partial saturation. Evidence that saturation factors for PCr/ATP are homogeneous in normal and disease states , 1991 .

[49]  E. R. Andrew,et al.  Phosphorus-31 magnetic relaxation of phosphocreatine in solution , 1991 .

[50]  Stanley E. Anderson,et al.  Calculation of Nuclear Spin Relaxation Times , 1990 .

[51]  E. R. Andrew,et al.  Phosphorus-31 magnetic relaxation of inorganic orthophosphate in solution , 1990 .

[52]  E. R. Andrew,et al.  Phosphorus-31 magnetic relaxation of adenosine 5′-monophosphate, adenosine 5′-diphosphate and adenosine 5′-triphosphate in solution , 1989 .

[53]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[54]  P A Bottomley,et al.  Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. , 1985, Science.

[55]  J. Ackerman,et al.  31P Spin‐Lattice Relaxation Times and Resonance Linewidths of Rat Tissue in Vivo: Dependence upon the Static Magnetic Field Strength , 1985, Magnetic resonance in medicine.

[56]  Catherine C Mitsch,et al.  Substituent and solvent effects on the 31P NMR chemical shifts of substituted diethyl phenylphosphonates , 1971 .

[57]  D. Look,et al.  Time Saving in Measurement of NMR and EPR Relaxation Times , 1970 .

[58]  R. R. Ernst,et al.  Application of Fourier Transform Spectroscopy to Magnetic Resonance , 1966 .