Zirconia Oxygen Sensor - An Equivalent Circuit Model

The zirconia exhaust gas oxygen sensor is a key component in closed loop engine emissions control systems. An equivalent circuit model of the sensor is derived from fundamental electrochemical principles. In this model, sensor electrode resistance and capacitance are separated from the zirconia electrolyte resistance. Numerical examples are given to show how the equivalent circuit can be used to model both steady state and transient characteristics of sensors.

[1]  D. S. Howarth,et al.  Zirconia-based lean air-fuel ratio sensor , 1978 .

[2]  H. Manger,et al.  Lambda-Sensor with Y2O3-Stabilized ZrO2-Ceramic for Application in Automotive Emission Control Systems , 1977 .

[3]  W. Fleming DEVICE MODEL OF THE ZIRCONIA OXYGEN SENSOR , 1977 .

[4]  L. Heyne,et al.  Correlation between impedance, microstructure and composition of calcia-stabilized zirconia , 1976 .

[5]  A. D. Franklin,et al.  Electrode Effects in the Measurement of Ionic Conductivity , 1975 .

[6]  D. S. Eddy Physical principles of the zirconia exhaust gas sensor , 1974 .

[7]  J. M. Whelan,et al.  Effects of mixed and ionic conduction in ZrO2 and ThO2 as CO oxidation catalysts , 1974 .

[8]  S. Pizzini,et al.  Influence of cell geometry on the shape of polarization curves of porous Pt electrodes on a YSZ electrolyte , 1974 .

[9]  S. E. Voltz,et al.  Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts , 1973 .

[10]  S. Pizzini,et al.  On the influence of the annealing temperature and heavy current treatments on the porous structure of platinum electrodes and on the kinetics of the oxygen reaction at high temperatures , 1973 .

[11]  T. Etsell,et al.  Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells , 1971 .

[12]  J. T. Waber,et al.  Mathematical Study of Galvanic Corrosion Equal Coplanar Anode and Cathode with Unequal Polarization Parameters , 1970 .

[13]  R. Brook,et al.  Direct Current‐Voltage Characteristics of Calcia Stabilized Zirconia with Porous Platinum Electrodes , 1970 .

[14]  J. E. Bauerle Study of solid electrolyte polarization by a complex admittance method , 1969 .

[15]  William J. Fleming,et al.  Physical Principles Governing Nonideal Behavior of the Zirconia Oxygen Sensor , 1977 .

[16]  Y. Nishiyama,et al.  Surface interactions between chemisorbed species on platinum: Carbon monoxide, hydrogen, oxygen, and methanol , 1974 .