Role of refractive index in metalens performance.

Sub-wavelength diffractive optics, commonly known as metasurfaces, have recently garnered significant attention for their ability to create ultra-thin flat lenses with a high numerical aperture. Several materials with different refractive indices have been used to create metasurface lenses (metalenses). In this paper, we analyze the role of refractive index on the performance of these metalenses. We employ both forward and inverse design methodologies to perform our analysis. We found that, while high-refractive-index materials allow for extreme reduction of the focal length, for moderate focal lengths and numerical aperture (<0.6), there is no appreciable difference in the focal spot size and focusing efficiency for metalenses made of different materials with refractive indices ranging between 1.2 and 3.43 in forward design, and 1.25 and 3.5 in inverse design.

[1]  H. Craighead,et al.  Diffractive phase elements based on two-dimensional artificial dielectrics. , 1995, Optics letters.

[2]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[3]  W. T. Chen,et al.  Visible Wavelength Planar Metalenses Based on Titanium Dioxide , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Marco Fiorentino,et al.  Sub-Wavelength Grating Lenses With a Twist , 2014, IEEE Photonics Technology Letters.

[5]  Xinan Liang,et al.  A Metalens with a Near-Unity Numerical Aperture. , 2018, Nano letters.

[6]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[7]  David Sell,et al.  Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. , 2017, Nano letters.

[8]  O. Wright,et al.  Upholding the diffraction limit in the focusing of light and sound , 2016, 1602.07958.

[9]  Juntao Li,et al.  Ultrahigh Numerical Aperture Metalens at Visible Wavelengths. , 2018, Nano letters.

[10]  Edwin Yue-Bun Pun,et al.  Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. , 2013, Nano letters.

[11]  Arka Majumdar,et al.  Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [Invited] , 2018, Optical Materials Express.

[12]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[13]  Francis Arthur Jenkins,et al.  Fundamentals of Optics , 1976 .

[14]  R. Piestun,et al.  Aperiodic Volume Optics , 2010 .

[15]  Philippe Lalanne,et al.  Metalenses at visible wavelengths: past, present, perspectives , 2016 .

[16]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[17]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[18]  Jianji Yang,et al.  Analysis of material selection on dielectric metasurface performance. , 2017, Optics express.

[19]  Shumin He,et al.  Visible light metasurfaces based on gallium nitride high contrast gratings , 2016 .

[20]  W Stork,et al.  Artificial distributed-index media fabricated by zero-order gratings. , 1991, Optics letters.

[21]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[22]  Y. N. Ahammed,et al.  A study on the Moss relation , 1995 .

[23]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[24]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[25]  Arka Majumdar,et al.  Inverse design of optical elements based on arrays of dielectric spheres. , 2018, Applied optics.

[26]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[27]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[28]  Uli Lemmer,et al.  CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres , 2017, 1706.02145.

[29]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[30]  Ke Wang,et al.  Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm , 2014, Scientific Reports.

[31]  David Sell,et al.  Freeform Metagratings Based on Complex Light Scattering Dynamics for Extreme, High Efficiency Beam Steering , 2017, 1709.05019.

[32]  Steven G. Johnson,et al.  Inverse design of large-area metasurfaces. , 2018, Optics express.

[33]  Metasurface Freeform Nanophotonics , 2016, Scientific Reports.

[34]  H. Craighead,et al.  Diffractive lens fabricated with mostly zeroth-order gratings. , 1996, Optics letters.

[35]  A. Friesem,et al.  Resonant grating waveguide structures , 1997 .

[36]  Arka Majumdar,et al.  Low contrast dielectric metasurface optics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[37]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .