Elliptic Ruijsenaars difference operators, symmetric polynomials, and Wess-Zumino-Witten fusion rings

The fusion ring for ŝu(n)m Wess-Zumino-Witten conformal field theories is known to be isomorphic to a factor ring of the ring of symmetric polynomials presented by Schur polynomials. We introduce a deformation of this factor ring associated with eigenpolynomials for the elliptic Ruijsenaars difference operators. The corresponding Littlewood-Richardson coefficients are governed by a Pieri rule stemming from the eigenvalue equation. The orthogonality of the eigenbasis gives rise to an analog of the Verlinde formula. In the trigonometric limit, our construction recovers the refined ŝu(n)m WessZumino-Witten fusion ring associated with the Macdonald polynomials.

[1]  H. Nakajima Refined Chern-Simons theory and Hilbert schemes of points on the plane , 2012, 1211.5821.

[2]  C. Stroppel,et al.  The slˆ(n)k-WZNW fusion ring: A combinatorial construction and a realisation as quotient of quantum cohomology , 2009, 0909.2347.

[3]  K. Ueno,et al.  Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries , 1989 .

[4]  J. Fuchs Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory , 1992 .

[5]  Frederick M. Goodman,et al.  Littlewood-Richardson coefficients for Hecke algebras at roots of unity , 1990 .

[6]  M. Hallnas,et al.  Quantization and explicit diagonalization of new compactified trigonometric Ruijsenaars-Schneider systems , 2017, 1707.08483.

[7]  Orthogonal polynomials associated with root systems , 2000, math/0011046.

[8]  P. Mathieu,et al.  Supersymmetric Ruijsenaars-Schneider model. , 2014, Physical review letters.

[9]  A. Morozov,et al.  Duality in elliptic Ruijsenaars system and elliptic symmetric functions , 2021 .

[10]  Alexander Kirillov On inner product in modular tensor categories. I , 1995 .

[11]  Yutaka Yoshida,et al.  G/G gauged WZW-matter model, Bethe Ansatz for q-boson model and Commutative Frobenius algebra , 2013, 1308.4608.

[12]  I. G. MacDonald,et al.  Affine Hecke Algebras and Orthogonal Polynomials , 2003 .

[13]  Eugene Gorsky,et al.  Refined knot invariants and Hilbert schemes , 2013, 1304.3328.

[14]  I. Cherednik DAHA-Jones polynomials of torus knots , 2014, 1406.3959.

[15]  The Quantum Dynamics of the Compactified Trigonometric Ruijsenaars–Schneider Model , 1997, math/9709221.

[16]  J. Haglund The combinatorics of knot invariants arising from the study of Macdonald polynomials , 2016 .

[17]  D. Gepner Fusion rings and geometry , 1991 .

[18]  Felix Klein,et al.  An approach through invariants and representations , 2008 .

[19]  C. Korff Cylindric Versions of Specialised Macdonald Functions and a Deformed Verlinde Algebra , 2011, 1110.6356.

[20]  S. Ruijsenaars Systems of Calogero-Moser Type , 1999 .

[21]  Tosio Kato Perturbation theory for linear operators , 1966 .

[22]  M. Aganagic,et al.  Knot Homology and Refined Chern–Simons Index , 2015 .

[23]  C. Woodward,et al.  The index formula for the moduli of G-bundles on a curve , 2009 .

[24]  P. Etingof,et al.  On the affine analogue of Jack and Macdonald polynomials , 1995 .

[25]  E. Langmann,et al.  Construction of Eigenfunctions for the Elliptic Ruijsenaars Difference Operators , 2020, Communications in Mathematical Physics.

[26]  S. Ruijsenaars Complete integrability of relativistic Calogero-Moser systems and elliptic function identities , 1987 .

[27]  F. Goodman,et al.  Fusion algebras in integrable systems in two dimensions , 1991 .