On characteristic p multizeta values
暂无分享,去创建一个
[1] Chieh-Yu Chang,et al. An effective criterion for Eulerian multizeta values in positive characteristic , 2014, Journal of the European Mathematical Society.
[2] Chieh-Yu Chang. On periods of the third kind for rank 2 Drinfeld module , 2013 .
[3] Marius van der Put,et al. Galois Theory of Linear Differential Equations , 2012 .
[4] Chieh-Yu Chang. Special values of Drinfeld modular forms and algebraic independence , 2012 .
[5] Chieh-Yu Chang,et al. Algebraic independence of periods and logarithms of Drinfeld modules (with an appendix by Brian Conrad) , 2010, 1005.5120.
[6] D. Thakur. Shuffle Relations for Function Field Multizeta Values , 2009 .
[7] Chieh-Yu Chang,et al. ALGEBRAIC INDEPENDENCE OF ARITHMETIC GAMMA VALUES AND CARLITZ ZETA VALUES , 2009, 0909.0096.
[8] Dinesh S. Thakur,et al. Power sums with applications to multizeta and zeta zero distribution for Fq[t] , 2009, Finite Fields Their Appl..
[9] Chieh-Yu Chang,et al. Geometric Gamma values and zeta values in positive characteristic , 2009, 0905.2876.
[10] Chieh-Yu Chang. A note on a refined version of Anderson–Brownawell–Papanikolas criterion , 2009 .
[11] D. Thakur. Relations Between Multizeta Values for Fq(t) , 2009 .
[12] Chieh-Yu Chang,et al. Algebraic relations among periods and logarithms of rank 2 Drinfeld modules , 2008, 0807.3157.
[13] Chieh-Yu Chang,et al. Frobenius difference equations and algebraic independence of zeta values in positive equal characteristic , 2008, 0804.0038.
[14] A. Baker,et al. Logarithmic Forms and Diophantine Geometry , 2008 .
[15] Chieh-Yu Chang,et al. Determination of algebraic relations among special zeta values in positive characteristic , 2007 .
[16] M. Papanikolas. Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms , 2005, math/0506078.
[17] Y. Taguchi. On φ-modules , 2005 .
[18] Dinesh S. Thakur,et al. Function Field Arithmetic , 2004 .
[19] F. Beukers. A refined version of the Siegel-Shidlovskii theorem , 2004, math/0405549.
[20] W. Brownawell,et al. Determination of the algebraic relations among special Γ-values in positive characteristic , 2002, math/0207168.
[21] W. Brownawell,et al. Determination of the algebraic relations among special Gamma-values in positive characteristic , 2002 .
[22] T. Terasoma. Mixed Tate motives and multiple zeta values , 2001, math/0104231.
[23] W. Brownawell,et al. LINEAR INDEPENDENCE OF GAMMA VALUES IN POSITIVE CHARACTERISTIC , 2001, math/0106054.
[24] A. Goncharov. Multiple polylogarithms and mixed Tate motives , 2001, math/0103059.
[25] David Goss,et al. Basic Structures of Function Field Arithmetic , 1997 .
[26] Jing Yu. ANALYTIC HOMOMORPHISMS INTO DRINFELD MODULES , 1997 .
[27] A. Goncharov. THE DOUBLE LOGARITHM AND MANIN'S COMPLEX FOR MODULAR CURVES , 1997 .
[28] Jing Yu. Transcendence and special zeta values in characteristic p , 1991 .
[29] G. Anderson,et al. Tensor powers of the Carlitz module and zeta values , 1990 .
[30] G. Wüstholz. Multiplicity estimates on group varieties , 1989 .
[31] G. Wüstholz. Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen , 1989 .
[32] L. Wade. Certain quantities transcendental over $GF(p^n,x)$ , 1941 .
[33] Leonard Carlitz,et al. On certain functions connected with polynomials in a Galois field , 1935 .