On characteristic p multizeta values

In this article, we consider the characteristic p multizeta values introduced by Thakur. We report some recent progress on the analogue of Goncharov’s conjecture and a criterion of Eulerian multizeta values. Methods and key ingredients of the proofs are also discussed.

[1]  Chieh-Yu Chang,et al.  An effective criterion for Eulerian multizeta values in positive characteristic , 2014, Journal of the European Mathematical Society.

[2]  Chieh-Yu Chang On periods of the third kind for rank 2 Drinfeld module , 2013 .

[3]  Marius van der Put,et al.  Galois Theory of Linear Differential Equations , 2012 .

[4]  Chieh-Yu Chang Special values of Drinfeld modular forms and algebraic independence , 2012 .

[5]  Chieh-Yu Chang,et al.  Algebraic independence of periods and logarithms of Drinfeld modules (with an appendix by Brian Conrad) , 2010, 1005.5120.

[6]  D. Thakur Shuffle Relations for Function Field Multizeta Values , 2009 .

[7]  Chieh-Yu Chang,et al.  ALGEBRAIC INDEPENDENCE OF ARITHMETIC GAMMA VALUES AND CARLITZ ZETA VALUES , 2009, 0909.0096.

[8]  Dinesh S. Thakur,et al.  Power sums with applications to multizeta and zeta zero distribution for Fq[t] , 2009, Finite Fields Their Appl..

[9]  Chieh-Yu Chang,et al.  Geometric Gamma values and zeta values in positive characteristic , 2009, 0905.2876.

[10]  Chieh-Yu Chang A note on a refined version of Anderson–Brownawell–Papanikolas criterion , 2009 .

[11]  D. Thakur Relations Between Multizeta Values for Fq(t) , 2009 .

[12]  Chieh-Yu Chang,et al.  Algebraic relations among periods and logarithms of rank 2 Drinfeld modules , 2008, 0807.3157.

[13]  Chieh-Yu Chang,et al.  Frobenius difference equations and algebraic independence of zeta values in positive equal characteristic , 2008, 0804.0038.

[14]  A. Baker,et al.  Logarithmic Forms and Diophantine Geometry , 2008 .

[15]  Chieh-Yu Chang,et al.  Determination of algebraic relations among special zeta values in positive characteristic , 2007 .

[16]  M. Papanikolas Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms , 2005, math/0506078.

[17]  Y. Taguchi On φ-modules , 2005 .

[18]  Dinesh S. Thakur,et al.  Function Field Arithmetic , 2004 .

[19]  F. Beukers A refined version of the Siegel-Shidlovskii theorem , 2004, math/0405549.

[20]  W. Brownawell,et al.  Determination of the algebraic relations among special Γ-values in positive characteristic , 2002, math/0207168.

[21]  W. Brownawell,et al.  Determination of the algebraic relations among special Gamma-values in positive characteristic , 2002 .

[22]  T. Terasoma Mixed Tate motives and multiple zeta values , 2001, math/0104231.

[23]  W. Brownawell,et al.  LINEAR INDEPENDENCE OF GAMMA VALUES IN POSITIVE CHARACTERISTIC , 2001, math/0106054.

[24]  A. Goncharov Multiple polylogarithms and mixed Tate motives , 2001, math/0103059.

[25]  David Goss,et al.  Basic Structures of Function Field Arithmetic , 1997 .

[26]  Jing Yu ANALYTIC HOMOMORPHISMS INTO DRINFELD MODULES , 1997 .

[27]  A. Goncharov THE DOUBLE LOGARITHM AND MANIN'S COMPLEX FOR MODULAR CURVES , 1997 .

[28]  Jing Yu Transcendence and special zeta values in characteristic p , 1991 .

[29]  G. Anderson,et al.  Tensor powers of the Carlitz module and zeta values , 1990 .

[30]  G. Wüstholz Multiplicity estimates on group varieties , 1989 .

[31]  G. Wüstholz Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen , 1989 .

[32]  L. Wade Certain quantities transcendental over $GF(p^n,x)$ , 1941 .

[33]  Leonard Carlitz,et al.  On certain functions connected with polynomials in a Galois field , 1935 .