Circuits, the Groups of Richard Thompson, and Conp-completeness

We construct a finitely presented group with coNP-complete word problem, and a finitely generated simple group with coNP-complete word problem. These groups are represented as Thompson groups, hence as partial transformation groups of strings. The proof provides a simulation of combinational circuits by elements of the Thompson–Higman group G3,1.

[1]  Об искривлении подгрупп конечно-определенных групп@@@On subgroup distortion in finitely presented groups , 1997 .

[2]  On subgroup distortion in finitely presented groups , 1997 .

[3]  Richard J. Lipton,et al.  Word Problems Solvable in Logspace , 1977, JACM.

[4]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[5]  E. Rips,et al.  Isoperimetric functions of groups and computational complexity of the word problem , 1998 .

[6]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[7]  Jean-Camille Birget The Groups of Richard Thompson and Complexity , 2004, Int. J. Algebra Comput..

[8]  Elizabeth Scott A finitely presented simple group with unsolvable conjugacy problem , 1984 .

[9]  Jean-Camille Birget Functions on Groups and Computational Complexity , 2004, Int. J. Algebra Comput..

[10]  Yechezkel Zalcstein,et al.  The Complexity of Grigorchuk Groups with Application to Cryptography , 1991, Theor. Comput. Sci..

[11]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[12]  Jean-Camille Birget Circuits, coNP-completeness, and the groups of Richard Thompson , 2003 .

[13]  K. Reidemeister Einführung in die kombinatorische Topologie , 1951 .

[14]  Jean-Camille Birget,et al.  Isoperimetric and isodiametric functions of groups , 1998 .

[15]  Claas E. Röver Constructing Finitely Presented Simple Groups That Contain Grigorchuk Groups , 1999 .

[16]  A Tour Around Finitely Presented Infinite Simple Groups , 1992 .

[17]  Noel Brady,et al.  There is only one gap in the isoperimetric spectrum , 2000 .

[18]  Richard J. Thompson Embeddings into Finitely Generated Simple Groups Which Preserve the Word Problem , 1980 .

[19]  Jean-Camille Birget Reductions and functors from problems to word problems , 2000, Theor. Comput. Sci..

[20]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[21]  Simon Salamon,et al.  Invitations to Geometry and Topology, Oxford Graduate texts in Mathematics 7 , 2002 .

[22]  A. Yu. Ol'shanskii Hyperbolicity of Groups with Subquadratic isoperimetric inequality , 1991, Int. J. Algebra Comput..

[23]  Elizabeth Scott A construction which can be used to produce finitely presented infinite simple groups , 1984 .

[24]  W. Magnus,et al.  Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .

[25]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[26]  Friedrich Otto,et al.  Pseudo-Natural Algorithms for the Word Problem for Finitely Presented Monoids and Groups , 1985, J. Symb. Comput..

[27]  Ralph McKenzie,et al.  An Elementary Construction of Unsolvable Word Problems in Group Theory , 1973 .

[28]  Jean-Camille Birget Time-Complexity of the Word Problem for Semigroups and the Higman Embedding Theorem , 1998, Int. J. Algebra Comput..

[29]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[30]  G. Higman,et al.  Finitely presented infinite simple groups , 1974 .

[31]  Mark V. Sapir,et al.  Length and Area Functions on Groups and Quasi-Isometric Higman Embeddings , 2001, Int. J. Algebra Comput..