Colloidal holography and crystal dislocations

The analogous nature of dislocations in crystals and light leads to some interesting links between the properties of optical and crystal dislocations. A dislocation in a crystal can be described by a Burgers vector b, whilst a dislocation in a laser mode such as the vortex in a Laguerre Gaussian beam, can be described by a topological charge l2. By illuminating both optically trapped and self-assembled two-dimensional colloidal crystals with a Gaussian laser beam, we show a direct link between crystal and light dislocations, where the first order diffraction pattern from a crystal with Burgers' vector b = na contains vortex laser modes of topological charge l=±mn, (where n is an integer, a is the lattice constant of the crystal and m is an integer corresponding to the diffraction order).

[1]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[2]  Miles J. Padgett,et al.  Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner , 2000 .

[3]  Jean-Marc R. Fournier,et al.  Writing diffractive structures by optical trapping , 1995, Electronic Imaging.

[4]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[5]  Kishan Dholakia,et al.  The Production Of Multiringed Laguerre-Gaussian Modes By Computer-Generated Holograms , 1998 .

[6]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[7]  Simpson,et al.  Second-harmonic generation and the orbital angular momentum of light. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Anpei Ye,et al.  Dynamic holographic optical tweezers using a twisted-nematic liquid crystal display , 2006 .

[9]  David A. Weitz,et al.  Visualization of Dislocation Dynamics in Colloidal Crystals , 2004, Science.

[10]  Asher A. Friesem,et al.  Efficient conversion of a Gaussian beam to a high purity helical beam , 2002 .

[11]  Miles J. Padgett,et al.  Optical tweezers and optical spanners with Laguerre-Gaussian modes , 1996 .

[12]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[13]  David G. Grier,et al.  Evolution of a colloidal critical state in an optical pinning potential landscape , 2002 .

[14]  D. Marr,et al.  Tailored Surfaces Using Optically Manipulated Colloidal Particles , 1999 .

[15]  W Sibbett,et al.  Creation and Manipulation of Three-Dimensional Optically Trapped Structures , 2002, Science.

[16]  Grover A. Swartzlander,et al.  Trapping of low-index microparticles in an optical vortex , 1998 .

[17]  O. Lavrentovich,et al.  Optical vortices generated by dislocations in a cholesteric liquid crystal. , 2000, Optics letters.

[18]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[19]  Norman R. Heckenberg,et al.  Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms , 1995 .

[20]  H. Rubinsztein-Dunlop,et al.  Laser beams with phase singularities , 1992 .