Time-varying models for extreme values

We propose a new approach for modeling extreme values that are measured in time and space. First we assume that the observations follow a Generalized Extreme Value (GEV) distribution for which the location, scale or shape parameters define the space–time structure. The temporal component is defined through a Dynamic Linear Model (DLM) or state space representation that allows to estimate the trend or seasonality of the data in time. The spatial element is imposed through the evolution matrix of the DLM where we adopt a process convolution form. We show how to produce temporal and spatial estimates of our model via customized Markov Chain Monte Carlo (MCMC) simulation. We illustrate our methodology with extreme values of ozone levels produced daily in the metropolitan area of Mexico City and with rainfall extremes measured at the Caribbean coast of Venezuela.

[1]  D. Gamerman,et al.  Bayesian analysis of extreme events with threshold estimation , 2004 .

[2]  Jonathan A. Tawn,et al.  A Bayesian Analysis of Extreme Rainfall Data , 1996 .

[3]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[4]  Jonathan A. Tawn,et al.  Modelling Dependence within Joint Tail Regions , 1997 .

[5]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[6]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[7]  Carlo Gaetan,et al.  Smoothing Sample Extremes with Dynamic Models , 2004 .

[8]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[9]  Jonathan A. Tawn,et al.  A conditional approach for multivariate extreme values (with discussion) , 2004 .

[10]  F P Wheeler,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1998, J. Oper. Res. Soc..

[11]  Scott A. Sisson,et al.  A fully probabilistic approach to extreme rainfall modeling , 2003 .

[12]  C. Anderson,et al.  Quantitative Methods for Current Environmental Issues , 2005 .

[13]  Stuart G. Coles,et al.  Spatial Regression Models for Extremes , 1999 .

[14]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[15]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[16]  James Pickands,et al.  The two-dimensional Poisson process and extremal processes , 1971, Journal of Applied Probability.

[17]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[18]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[19]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[20]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[21]  W. Gilks Markov Chain Monte Carlo , 2005 .

[22]  Gabriel Huerta,et al.  A spatiotemporal model for Mexico City ozone levels , 2004 .

[23]  Eric Gilleland,et al.  Spatial models for the distribution of extremes , 2005 .

[24]  Debbie J Dupuis Ozone Concentrations: A Robust Analysis of Multivariate Extremes , 2005, Technometrics.

[25]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[26]  Richard L. Smith,et al.  Markov chain models for threshold exceedances , 1997 .

[27]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.