Ab initio determination of electrical and thermal conductivity of liquid aluminum

We present here a technique to compute electronic thermal conductivity of fluids using quantum-molecular dynamics and the formulation of Chester-Tellung for the Kubo-Greenwood formula. In order to validate our implementation, the electrical and thermal conductivities of liquid aluminum were determined from $70\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ above the melting point up to $10\phantom{\rule{0.2em}{0ex}}000\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. Results agree well with experimental data for Al at $1000\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. The Lorentz number, defined as $K∕\ensuremath{\sigma}T$, where $K$ is the thermal conductivity, $\ensuremath{\sigma}$ is the electrical conductivity, and $T$ is the temperature, is close to the ideal value of $2.44\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$ for metals, and the Wiedemann-Franz law is verified.

[1]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[2]  G. V. Chester,et al.  The Law of Wiedemann and Franz , 1961 .

[3]  W. Rhim,et al.  Noncontact electrical resistivity measurement technique for molten metals , 1998 .

[4]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[5]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[6]  Lidunka Vočadlo,et al.  Ab initio melting curve of the fcc phase of aluminum , 2002 .

[7]  P. Silvestrelli No evidence of a metal-insulator transition in dense hot aluminum: A first-principles study , 1999 .

[8]  J. Kress,et al.  Electrical conductivity for warm, dense aluminum plasmas and liquids. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  S. Bagnich,et al.  Computational study of the percolation phenomena in inhomogeneous two- and three-dimensional systems , 2003 .

[10]  Nagel,et al.  Thermodynamic and transport properties of dense hydrogen plasmas. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  G. R. Gathers Thermophysical properties of liquid copper and aluminum , 1983 .

[12]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[13]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[14]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[15]  M. M. G. Alemany,et al.  Kohn-Shamab initiomolecular dynamics study of liquidAlnear melting , 2004 .

[16]  Thermoelectric transport properties in disordered systems near the Anderson transition , 1999, cond-mat/9904362.

[17]  D A Greenwood,et al.  The Boltzmann Equation in the Theory of Electrical Conduction in Metals , 1958 .

[18]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[19]  M. Desjarlais,et al.  Electrical conductivity and equation-of-state study of warm dense copper: Measurements and quantum molecular dynamics calculations , 2005 .

[20]  V. Recoules,et al.  Electrical conductivity of hot expanded aluminum: experimental measurements and ab initio calculations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  R. More,et al.  An electron conductivity model for dense plasmas , 1984 .

[22]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[23]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[24]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[25]  Rinker Systematic calculations of plasma transport coefficients for the Periodic Table. , 1988, Physical review. A, General physics.