Predicting geometry of rectangular and hyperbolic fin profiles with temperature-dependent thermal properties using decomposition and evolutionary methods

Abstract This work proposes the application of the Adomian decomposition method (ADM) in conjunction with the differential evolution (DE) for simultaneously estimating the dimensions of a rectangular and hyperbolic profile annular fin in order to satisfy a prescribed temperature requirement. The thermal conductivity and the surface heat transfer are assumed to be temperature-dependent. The required temperature field has been obtained using ADM for cases, involving insulated and convective boundary conditions at the tip. Then, using an inverse scheme based on DE, required fins dimensions satisfying a prescribed temperature field are estimated. Owing to the correlated nature of the unknowns, many feasible solutions have been found to lie within a given range satisfying the given temperature field. This temperature field can offer the flexibility in selecting the designing parameters. The present study is expected to be useful for selecting the dimensions of a rectangular and hyperbolic profile annular fin which can satisfy the given temperature field.

[1]  J. Dias,et al.  Levenberg-Marquardt application to two-phase nonlinear parameter estimation for finned-tube coil evaporators , 2006 .

[2]  A. Aziz,et al.  Application of perturbation techniques to heat-transfer problems with variable thermal properties , 1976 .

[3]  Cheng-Hung Huang,et al.  A transient 3-D inverse problem in imaging the time-dependent local heat transfer coefficients for plate fin , 2005 .

[4]  Sidhartha Panda,et al.  Differential evolution algorithm for SSSC-based damping controller design considering time delay , 2011, J. Frankl. Inst..

[5]  Kim Tiow Ooi,et al.  Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement , 2013 .

[6]  Qiuwang Wang,et al.  Application of a Genetic Algorithm for Thermal Design of Fin-and-Tube Heat Exchangers , 2008 .

[7]  Cha'o-Kuang Chen,et al.  A decomposition method for solving the convective longitudinal fins with variable thermal conductivity , 2002 .

[8]  Mostafa H. Sharqawy,et al.  Efficiency and optimization of straight fins with combined heat and mass transfer – An analytical solution , 2008 .

[9]  Tamer A. Abassy Improved Adomian decomposition method (solving nonlinear non-homogenous initial value problem) , 2011, J. Frankl. Inst..

[10]  D. P. Sekulic,et al.  Extended surface heat transfer , 1972 .

[11]  Ranjan Das,et al.  Application of genetic algorithm for unknown parameter estimations in cylindrical fin , 2012, Appl. Soft Comput..

[12]  Rong-Hua Yeh,et al.  Fins with temperature dependent surface heat flux—II. Multi-boiling heat transfer , 1994 .

[13]  Efficiency and Optimization of a Straight Rectangular Fin with Combined Heat and Mass Transfer , 2008 .

[14]  R. Das,et al.  A simplex search method for a conductive–convective fin with variable conductivity , 2011 .

[15]  Min-Hsing Chang,et al.  A decomposition solution for fins with temperature dependent surface heat flux , 2005 .

[16]  Hsi-Mei Chen,et al.  Prediction of local thermal contact conductance in plate finned-tube heat exchangers , 1999 .

[17]  R. V. Rao,et al.  Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm , 2010 .

[18]  Cheng-Hung Huang,et al.  Inverse problem of determining the unknown strength of an internal plane heat source , 1992 .

[19]  L. Kurpa,et al.  Research of nonlinear vibrations of orthotropic plates with a complex form , 2006 .

[20]  Said Abboudi,et al.  Numerical estimation of two convective boundary conditions of a two-dimensional rectangular fin , 2011, J. Frankl. Inst..

[21]  F. Khani,et al.  Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient , 2009 .

[22]  Prabal Talukdar,et al.  Performance evaluation of hybrid differential evolution approach for estimation of the strength of a heat source in a radiatively participating medium , 2013 .

[23]  Cha'o-Kuang Chen,et al.  A Double Decomposition Method for Solving the Annular Hyperbolic Profile Fins With Variable Thermal Conductivity , 2010 .

[24]  Haw Long Lee,et al.  Inverse problem in determining convection heat transfer coefficient of an annular fin , 2007 .

[25]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[26]  Fung-Bao Liu,et al.  A fuzzy approach to the convective longitudinal fin array design , 2005 .

[27]  Kenneth DeJong Evolutionary computation: a unified approach , 2007, GECCO.

[28]  E. Jaynes The well-posed problem , 1973 .