Copositive programming motivated bounds on the stability and the chromatic numbers

The Lovász theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovász theta number toward the chromatic number of G, which is shown to be equal to the fractional chromatic number of G. Solving copositive programs is NP-hard. This motivates the study of tractable approximations of the copositive cone. We investigate the Parrilo hierarchy to approximate this cone and provide computational simplifications for the approximation of the chromatic number of vertex transitive graphs. We provide some computational results indicating that the Lovász theta number can be strengthened significantly toward the fractional chromatic number of G on some Hamming graphs.

[1]  Franz Rendl,et al.  Semidefinite programming and integer programming , 2002 .

[2]  Monique Laurent,et al.  Computing Semidefinite Programming Lower Bounds for the (Fractional) Chromatic Number Via Block-Diagonalization , 2008, SIAM J. Optim..

[3]  Franz Rendl,et al.  A semidefinite programming-based heuristic for graph coloring , 2008, Discret. Appl. Math..

[4]  Monique Laurent,et al.  Strengthened semidefinite programming bounds for codes , 2007, Math. Program..

[5]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[6]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[7]  A. J. Quist,et al.  Copositive realxation for genera quadratic programming , 1998 .

[8]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[9]  A. J. Quist,et al.  Copositive relaxation for general quadratic programming. , 1998 .

[10]  Mario Szegedy,et al.  A note on the /spl theta/ number of Lovasz and the generalized Delsarte bound , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[11]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[12]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[13]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[14]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[15]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[16]  M. Laurent THE OPERATOR FOR THE CHROMATIC NUMBER OF AGRAPH , 2008 .

[17]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[18]  Nikola Gvozdenovic Approximating the chromatic number of graph by Semidefinite Programming , 2006 .

[19]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[20]  Stanislav Busygin,et al.  On ~chi(G)-alpha(G)>0 gap recognition and alpha(G)-upper bounds , 2003, Electron. Colloquium Comput. Complex..

[21]  李幼升,et al.  Ph , 1989 .

[22]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[23]  Monique Laurent,et al.  The Operator Psi for the Chromatic Number of a Graph , 2008, SIAM J. Optim..

[24]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[25]  Etienne de Klerk,et al.  On Copositive Programming and Standard Quadratic Optimization Problems , 2000, J. Glob. Optim..

[26]  Uri Zwick,et al.  Coloring k-colorable graphs using relatively small palettes , 2002, J. Algorithms.

[27]  Stanislav Busygin,et al.  On NP-hardness of the clique partition - Independence number gap recognition and related problems , 2006, Discret. Math..

[28]  Alexander Schrijver,et al.  Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..

[29]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[30]  Franz Rendl,et al.  Semidefinite programming relaxations for graph coloring and maximal clique problems , 2007, Math. Program..

[31]  Franz Rendl,et al.  Copositive and semidefinite relaxations of the quadratic assignment problem , 2009, Discret. Optim..

[32]  Javier Peña,et al.  Computing the Stability Number of a Graph Via Linear and Semidefinite Programming , 2007, SIAM J. Optim..

[33]  Jean B. Lasserre,et al.  An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.