Random <inline-formula> <tex-math notation="LaTeX">$(d_{v},d_{c})$ </tex-math></inline-formula>-<italic>regular</italic> low-density parity-check (LDPC) codes, where each variable is involved in <inline-formula> <tex-math notation="LaTeX">$d_{v}$ </tex-math></inline-formula> parity checks and each parity check involves <inline-formula> <tex-math notation="LaTeX">$d_{c}$ </tex-math></inline-formula> variables are well-known to achieve the Shannon capacity of the binary symmetric channel, for sufficiently large <inline-formula> <tex-math notation="LaTeX">$d_{v}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$d_{c}$ </tex-math></inline-formula>, under exponential time decoding. However, polynomial time algorithms are only known to correct a much smaller fraction of errors. One of the most powerful polynomial-time algorithms with a formal analysis is the linear programming (LP) decoding algorithm of Feldman et al., which is known to correct an <inline-formula> <tex-math notation="LaTeX">$\Omega (1/d_{c})$ </tex-math></inline-formula> fraction of errors. In this paper, we show that fairly powerful extensions of LP decoding, based on the Sherali–Adams and Lasserre hierarchies, fail to correct much more errors than the basic LP-decoder. In particular, we show that: 1) for any values of <inline-formula> <tex-math notation="LaTeX">$d_{v}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$d_{c}$ </tex-math></inline-formula>, a linear number of rounds of the Sherali–Adams LP hierarchy cannot correct more than an <inline-formula> <tex-math notation="LaTeX">$O(1/d_{c})$ </tex-math></inline-formula> fraction of errors on a random <inline-formula> <tex-math notation="LaTeX">$(d_{v},d_{c})$ </tex-math></inline-formula>-regular LDPC code; and 2) for any value of <inline-formula> <tex-math notation="LaTeX">$d_{v}$ </tex-math></inline-formula> and infinitely many values of <inline-formula> <tex-math notation="LaTeX">$d_{c}$ </tex-math></inline-formula>, a linear number of rounds of the Lasserre SDP hierarchy cannot correct more than an <inline-formula> <tex-math notation="LaTeX">$O(1/d_{c})$ </tex-math></inline-formula> fraction of errors on a random <inline-formula> <tex-math notation="LaTeX">$(d_{v},d_{c})$ </tex-math></inline-formula>-regular LDPC code. Our proofs use a new <italic>stretching</italic> and <italic>collapsing</italic> technique that allows us to leverage recent progress in the study of the limitations of LP/SDP hierarchies for Maximum Constraint Satisfaction Problems (Max-CSPs). The problem then reduces to the construction of special <italic>balanced pairwise independent distributions</italic> for Sherali–Adams and special <italic>cosets of balanced pairwise independent subgroups</italic> for Lasserre. Our (algebraic) construction for the Lasserre hierarchy is based on designing sets of points in <inline-formula> <tex-math notation="LaTeX">${\mathbb F}_{q}^{d}$ </tex-math></inline-formula> (for <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> any power of 2 and <inline-formula> <tex-math notation="LaTeX">$d = 2,3$ </tex-math></inline-formula>) with special hyperplane-incidence properties—constructions that may be of independent interest. An intriguing consequence of our work is that <italic>expansion</italic> seems to be both the <italic>strength</italic> and the <italic>weakness</italic> of random regular LDPC codes. Some of our techniques are more generally applicable to a large class of Boolean CSPs called Min-Ones. In particular, for <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Hypergraph Vertex Cover, we obtain an improved integrality gap of <inline-formula> <tex-math notation="LaTeX">$k-1-\epsilon $ </tex-math></inline-formula> that holds after a <italic>linear</italic> number of rounds of the Lasserre hierarchy, for any <inline-formula> <tex-math notation="LaTeX">$k = q+1$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> an arbitrary prime power. The best previous gap for a linear number of rounds was equal to <inline-formula> <tex-math notation="LaTeX">$2-\epsilon $ </tex-math></inline-formula> and due to Schoenebeck.
[1]
Robert G. Gallager,et al.
Low-density parity-check codes
,
1962,
IRE Trans. Inf. Theory.
[2]
Emre Telatar,et al.
Finite-length analysis of low-density parity-check codes on the binary erasure channel
,
2002,
IEEE Trans. Inf. Theory.
[3]
Venkatesan Guruswami,et al.
Inapproximability of Edge-Disjoint Paths and low congestion routing on undirected graphs
,
2010,
Comb..
[4]
Jean B. Lasserre,et al.
An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs
,
2001,
IPCO.
[5]
D. Spielman,et al.
Expander codes
,
1996
.
[6]
Warren P. Adams,et al.
A hierarchy of relaxation between the continuous and convex hull representations
,
1990
.
[7]
Rüdiger L. Urbanke,et al.
Spatially coupled ensembles universally achieve capacity under belief propagation
,
2012,
2012 IEEE International Symposium on Information Theory Proceedings.
[8]
Martin J. Wainwright,et al.
Using linear programming to Decode Binary linear codes
,
2005,
IEEE Transactions on Information Theory.
[9]
Madhur Tulsiani.
CSP gaps and reductions in the lasserre hierarchy
,
2009,
STOC '09.
[10]
Jon Feldman,et al.
Decoding error-correcting codes via linear programming
,
2003
.
[11]
D.J.C. MacKay,et al.
Good error-correcting codes based on very sparse matrices
,
1997,
Proceedings of IEEE International Symposium on Information Theory.
[12]
Monique Laurent,et al.
A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming
,
2003,
Math. Oper. Res..
[13]
Madhur Tulsiani,et al.
SDP Gaps from Pairwise Independence
,
2012,
Theory Comput..
[14]
David Burshtein,et al.
Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes
,
2000,
IEEE Trans. Inf. Theory.
[15]
Simon Litsyn,et al.
On ensembles of low-density parity-check codes: Asymptotic distance distributions
,
2002,
IEEE Trans. Inf. Theory.
[16]
Alexandros G. Dimakis,et al.
Probabilistic Analysis of Linear Programming Decoding
,
2007,
IEEE Transactions on Information Theory.
[17]
Michael Viderman,et al.
LP decoding of codes with expansion parameter above 2/3
,
2013,
Inf. Process. Lett..
[18]
Siu On Chan,et al.
Approximation resistance from pairwise independent subgroups
,
2013,
STOC '13.
[19]
Martin J. Wainwright,et al.
LP Decoding Corrects a Constant Fraction of Errors
,
2004,
IEEE Transactions on Information Theory.
[20]
Rüdiger L. Urbanke,et al.
The capacity of low-density parity-check codes under message-passing decoding
,
2001,
IEEE Trans. Inf. Theory.
[21]
Grant Schoenebeck,et al.
Linear Level Lasserre Lower Bounds for Certain k-CSPs
,
2008,
2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[22]
David Burshtein,et al.
Asymptotic enumeration methods for analyzing LDPC codes
,
2004,
IEEE Transactions on Information Theory.
[23]
Venkatesan Guruswami,et al.
A New Multilayered PCP and the Hardness of Hypergraph Vertex Cover
,
2005,
SIAM J. Comput..
[24]
Sanjeev Arora,et al.
Message-Passing Algorithms and Improved LP Decoding
,
2012,
IEEE Trans. Inf. Theory.
[25]
Hanif D. Sherali,et al.
A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems
,
1990,
SIAM J. Discret. Math..
[26]
Madhur Tulsiani,et al.
Optimal Sherali-Adams Gaps from Pairwise Independence
,
2009,
APPROX-RANDOM.
[27]
Luca Trevisan,et al.
The Approximability of Constraint Satisfaction Problems
,
2001,
SIAM J. Comput..
[28]
Rüdiger L. Urbanke,et al.
Design of capacity-approaching irregular low-density parity-check codes
,
2001,
IEEE Trans. Inf. Theory.
[29]
Badih Ghazi,et al.
Linear programming decoding of spatially coupled codes
,
2013,
2013 IEEE International Symposium on Information Theory.
[30]
D. Burshtein,et al.
Bounds on the performance of belief propagation decoding
,
2001,
Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).