Nonequilibrium Glauber-type dynamics in continuum

We construct the nonequilibrium Glauber dynamics as a Markov process in configuration space for an infinite particle system in continuum with a general class of initial distributions. This class we define in terms of correlation functions bounds and it is preserved during the Markov evolution we constructed.

[1]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[2]  Time reversible and Gibbsian point processes, II. Markovian particle jump processes on a general phase space , 1982 .

[3]  D. W. Stroock,et al.  Nearest neighbor birth and death processes on the real line , 1978 .

[4]  Tosio Kato Perturbation theory for linear operators , 1966 .

[5]  Filippo Cesi,et al.  The spectral gap for a Glauber-type dynamics in a continuous gas☆ , 2002 .

[6]  Yuri Kondratiev,et al.  One-Particle Subspace of the Glauber Dynamics Generator for Continuous Particle Systems , 2004 .

[7]  C. Bandle Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems , 1975 .

[8]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[9]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[10]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[11]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[12]  Tobias Kuna,et al.  ON RELATIONS BETWEEN A PRIORI BOUNDS FOR MEASURES ON CONFIGURATION SPACES , 2004 .

[13]  Kazufumi Ito,et al.  Evolution Equations And Approximations , 2002, Series on Advances in Mathematics for Applied Sciences.

[14]  M. Reed,et al.  Fourier Analysis, Self-Adjointness , 1975 .

[15]  Time reversible and Gibbsian point processes I. Markovian spatial birth and death processes on a general phase space , 1981 .

[16]  A. Cohen On random fields , 1967 .

[17]  David Ruelle,et al.  Superstable interactions in classical statistical mechanics , 1970 .

[18]  T. Liggett Interacting Particle Systems , 1985 .

[19]  E. Lytvynov,et al.  On a spectral representation for correlation measures in configuration space analysis , 2006, math/0608343.

[20]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[21]  Equilibrium Glauber and Kawasaki dynamics of continuous particle systems , 2005 .

[22]  E. Lytvynov,et al.  Glauber dynamics of continuous particle systems , 2003, math/0306252.