Bayesian Estimation of Species Divergence Times Using Correlated Quantitative Characters

Discrete morphological data have been widely used to study species evolution, but the use of quantitative (or continuous) morphological characters is less common. Here, we implement a Bayesian method to estimate species divergence times using quantitative characters. Quantitative character evolution is modelled using Brownian diffusion with character correlation and character variation within populations. Through simulations, we demonstrate that ignoring the population variation (or population "noise") and the correlation among characters leads to biased estimates of divergence times and rate, especially if the correlation and population noise are high. We apply our new method to the analysis of quantitative characters (cranium landmarks) and molecular data from carnivoran mammals. Our results show that time estimates are affected by whether the correlations and population noise are accounted for or ignored in the analysis. The estimates are also affected by the type of data analysed, with analyses of morphological characters only, molecular data only, or a combination of both; showing noticeable differences among the time estimates. Rate variation of morphological characters among the carnivoran species appears to be very high, with Bayesian model selection indicating that the independent-rates model fits the morphological data better than the autocorrelated-rates model. We suggest that using morphological continuous characters, together with molecular data, can bring a new perspective to the study of species evolution. Our new model is implemented in the MCMCtree computer program for Bayesian inference of divergence times.

[1]  Robert P. Freckleton,et al.  Fast likelihood calculations for comparative analyses , 2012 .

[2]  Tanja Stadler,et al.  Dating phylogenies with sequentially sampled tips. , 2013, Systematic biology.

[3]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[4]  G. Slater Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous‐Palaeogene boundary , 2013 .

[5]  R. Felice,et al.  Developmental origins of mosaic evolution in the avian cranium , 2017, Proceedings of the National Academy of Sciences.

[6]  S. Winterton,et al.  Phylogeny, divergence times and biogeography of window flies (Scenopinidae) and the therevoid clade (Diptera: Asiloidea) , 2015 .

[7]  A. Goswami,et al.  The evolution of orbit orientation and encephalization in the Carnivora (Mammalia) , 2009, Journal of anatomy.

[8]  M. dos Reis,et al.  Dating Tips for Divergence-Time Estimation. , 2015, Trends in genetics : TIG.

[9]  Ziheng Yang,et al.  An Evaluation of Different Partitioning Strategies for Bayesian Estimation of Species Divergence Times , 2017, Systematic biology.

[10]  Eric W Goolsby,et al.  Likelihood-Based Parameter Estimation for High-Dimensional Phylogenetic Comparative Models: Overcoming the Limitations of "Distance-Based" Methods. , 2016, Systematic biology.

[11]  G. Ortí,et al.  An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). , 2015, Molecular phylogenetics and evolution.

[12]  Joseph Felsenstein,et al.  Using the quantitative genetic threshold model for inferences between and within species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  L. Harmon,et al.  INTEGRATING FOSSILS WITH MOLECULAR PHYLOGENIES IMPROVES INFERENCE OF TRAIT EVOLUTION , 2012, Evolution; international journal of organic evolution.

[14]  Yulia Mostovoy,et al.  Inferring Evolutionary Histories of Pathway Regulation from Transcriptional Profiling Data , 2013, PLoS Comput. Biol..

[15]  M. Hutchinson,et al.  Phylogenetic uncertainty and molecular clock calibrations: a case study of legless lizards (Pygopodidae, Gekkota). , 2009, Molecular phylogenetics and evolution.

[16]  S. Ho The changing face of the molecular evolutionary clock. , 2014, Trends in ecology & evolution.

[17]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[18]  Z. J. Tseng,et al.  THE FIRST RECORD OF THE LATE MIOCENE HYAENICTITHERIUM HYAENOIDES ZDANSKY (CARNIVORA: HYAENIDAE) IN INNER MONGOLIA AND AN EVALUATION OF THE GENUS , 2007 .

[19]  Joseph Felsenstein,et al.  A Comparative Method for Both Discrete and Continuous Characters Using the Threshold Model , 2011, The American Naturalist.

[20]  A. Löytynoja,et al.  Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis , 2008, Science.

[21]  R. Tedford,et al.  PHYLOGENETIC SYSTEMATICSOF THE BOROPHAGINAE(CARNIVORA: CANIDAE) , 1999 .

[22]  Ari Löytynoja,et al.  An algorithm for progressive multiple alignment of sequences with insertions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Masami Hasegawa,et al.  Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny , 2012, Proceedings of the Royal Society B: Biological Sciences.

[24]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[25]  Daniel S. Caetano,et al.  ratematrix: An R package for studying evolutionary integration among several traits on phylogenetic trees , 2017 .

[26]  M. Benton,et al.  Rocks and clocks: calibrating the Tree of Life using fossils and molecules. , 2007, Trends in ecology & evolution.

[27]  T. Garland,et al.  Within-species variation and measurement error in phylogenetic comparative methods. , 2007, Systematic biology.

[28]  Michael J. Landis,et al.  Phylogenetic analysis using Lévy processes: finding jumps in the evolution of continuous traits. , 2013, Systematic biology.

[29]  Brian D. Ripley,et al.  Wiley Series in Probability and Statistics , 1981 .

[30]  Z. Yang,et al.  A space-time process model for the evolution of DNA sequences. , 1995, Genetics.

[31]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[32]  J. Vinther,et al.  Constraints on the timescale of animal evolutionary history , 2015 .

[33]  S. Tavaré,et al.  Using the fossil record to estimate the age of the last common ancestor of extant primates , 2002, Nature.

[34]  S. Magallón Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. , 2010, Systematic biology.

[35]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[36]  Erik Otárola-Castillo,et al.  geomorph: an r package for the collection and analysis of geometric morphometric shape data , 2013 .

[37]  L. Revell,et al.  Testing quantitative genetic hypotheses about the evolutionary rate matrix for continuous characters , 2008 .

[38]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[39]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[40]  J. Felsenstein,et al.  EVOLUTIONARY TREES FROM GENE FREQUENCIES AND QUANTITATIVE CHARACTERS: FINDING MAXIMUM LIKELIHOOD ESTIMATES , 1981, Evolution; international journal of organic evolution.

[41]  Xiao-Mei Wang Phylogenetic systematics of the Hesperocyoninae (Carnivora, Canidae). Bulletin of the AMNH ; no. 221 , 1994 .

[42]  J. Huelsenbeck,et al.  The fossilized birth–death process for coherent calibration of divergence-time estimates , 2013, Proceedings of the National Academy of Sciences.

[43]  M. Suchard,et al.  Phylogeography takes a relaxed random walk in continuous space and time. , 2010, Molecular biology and evolution.

[44]  Mark Kirkpatrick,et al.  Better Estimates of Genetic Covariance Matrices by “Bending” Using Penalized Maximum Likelihood , 2010, Genetics.

[45]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[46]  S. Wroe,et al.  Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals , 2011, Proceedings of the Royal Society B: Biological Sciences.

[47]  D. Hillis,et al.  Modeling Character Change Heterogeneity in Phylogenetic Analyses of Morphology through the Use of Priors. , 2016, Systematic biology.

[48]  R. Lande NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION , 1976, Evolution; international journal of organic evolution.

[49]  Michael S. Y. Lee Multiple morphological clocks and total-evidence tip-dating in mammals , 2016, Biology Letters.

[50]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[51]  J. Felsenstein Phylogenies and quantitative characters , 1988 .

[52]  Michael J. Landis,et al.  Pulsed evolution shaped modern vertebrate body sizes , 2017, Proceedings of the National Academy of Sciences.

[53]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[54]  Tanja Stadler,et al.  Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins , 2015, Systematic biology.

[55]  J. Gower Generalized procrustes analysis , 1975 .

[56]  A. Goswami,et al.  The macroevolutionary consequences of phenotypic integration: from development to deep time , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[57]  C. G. Schrago,et al.  Combining fossil and molecular data to date the diversification of New World Primates , 2013, Journal of evolutionary biology.

[58]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  Sebastián Duchêne,et al.  ClockstaR: choosing the number of relaxed-clock models in molecular phylogenetic analysis , 2014, Bioinform..

[60]  Tanja Stadler,et al.  Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration , 2014, PLoS Comput. Biol..

[61]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[62]  N. Solounias,et al.  The Hyaenidae: Taxonomy, Systematics and Evolution , 1991 .

[63]  F. Ronquist,et al.  Closing the gap between rocks and clocks using total-evidence dating , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[64]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[65]  Hannah M. Wood,et al.  Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders. , 2013, Systematic biology.

[66]  Alexandros Stamatakis,et al.  Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies , 2015, Systematic biology.

[67]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[68]  C. Parins-Fukuchi Bayesian placement of fossils on phylogenies using quantitative morphometric data , 2018, Evolution; international journal of organic evolution.

[69]  L. Werdelin Studies of fossil hyaenas: the genera Thalassictis Gervais ex Nordmann, Palhyaena Gervais, Hyaenictitherium Kretzoi, Lycyaena Hensel and Palinhyaena Qiu, Huang & Guo , 1988 .

[70]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[71]  H. Kishino,et al.  A New Molecular Clock of Mitochondrial DNA and the Evolution of Hominoids , 1984 .

[72]  Hélène Morlon,et al.  A Penalized Likelihood Framework for High‐Dimensional Phylogenetic Comparative Methods and an Application to New‐World Monkeys Brain Evolution , 2018, Systematic biology.

[73]  Stefan Schlager,et al.  Morpho and Rvcg – Shape Analysis in R: R-Packages for Geometric Morphometrics, Shape Analysis and Surface Manipulations , 2017 .

[74]  Ziheng Yang,et al.  The Impact of the Rate Prior on Bayesian Estimation of Divergence Times with Multiple Loci , 2014, Systematic biology.

[75]  J. Felsenstein Maximum-likelihood estimation of evolutionary trees from continuous characters. , 1973, American journal of human genetics.

[76]  C. Parins-Fukuchi Use of Continuous Traits Can Improve Morphological Phylogenetics , 2017, bioRxiv.

[77]  Ziheng Yang,et al.  Inferring speciation times under an episodic molecular clock. , 2007, Systematic biology.

[78]  N. Matzke,et al.  Inferring node dates from tip dates in fossil Canidae: the importance of tree priors , 2016, bioRxiv.

[79]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[80]  Charles S. P. Foster,et al.  Strategies for Partitioning Clock Models in Phylogenomic Dating: Application to the Angiosperm Evolutionary Timescale , 2017, bioRxiv.

[81]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[82]  T. Townsend,et al.  Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa , 2015, PloS one.

[83]  Ziheng Yang,et al.  Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. , 2006, Molecular biology and evolution.

[84]  Kathryn Larson-Johnson Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. , 2016, The New phytologist.

[85]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[86]  Dan Beachy-Quick XV , 1825, The Princess Casamassima.

[87]  Mario dos Reis,et al.  Bayesian molecular clock dating of species divergences in the genomics era , 2015, Nature Reviews Genetics.

[88]  Ziheng Yang,et al.  Using Phylogenomic Data to Explore the Effects of Relaxed Clocks and Calibration Strategies on Divergence Time Estimation: Primates as a Test Case , 2017, bioRxiv.

[89]  F. Ronquist,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Total-evidence Dating under the Fossilized Birth–death Process , 2022 .

[90]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[91]  P. Palmqvist,et al.  A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb , 2014, BMC Evolutionary Biology.

[92]  Ming-Hui Chen,et al.  Improving marginal likelihood estimation for Bayesian phylogenetic model selection. , 2011, Systematic biology.

[93]  B. Bomfleur,et al.  Using more than the oldest fossils: dating osmundaceae with three Bayesian clock approaches. , 2015, Systematic biology.