A Spectral Triple for a Solenoid Based on the Sierpinski Gasket

The Sierpinski gasket admits a natural locally isometric ramified self-covering. A semifinite spectral triple is constructed on the resulting solenoidal space, and its main geometrical features are discussed.

[1]  A. Paterson Contractive Spectral Triples for Crossed Products , 2012, 1204.4404.

[2]  Andrea Arauza Rivera Spectral triples for the variants of the Sierpiński gasket , 2017, Journal of Fractal Geometry.

[3]  M. Lapidus,et al.  Dirac operators and spectral triples for some fractal sets built on curves , 2006, math/0610222.

[4]  Erik Christensen,et al.  Spectral triples and the geometry of fractals , 2010, 1002.3081.

[5]  On elliptic operators in , 1980 .

[6]  R. Strichartz Fractafolds based on the Sierpinski gasket and their spectra , 2003 .

[7]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[8]  A C∗-algebra of geometric operators on self-similar CW-complexes. Novikov–Shubin and L2-Betti numbers , 2006, math/0607603.

[9]  Martin T. Barlow,et al.  Brownian motion on the Sierpinski gasket , 1988 .

[11]  Volodymyr Nekrashevych,et al.  Self-Similar Groups , 2005, 2304.11232.

[12]  Stuart White,et al.  On spectral triples on crossed products arising from equicontinuous actions , 2011, 1103.6199.

[13]  Hideki Kosaki,et al.  Generalized s-numbers of τ-measurable operators , 1986 .

[14]  R. Strichartz Fractals in the Large , 1998, Canadian Journal of Mathematics.

[15]  John E. Roberts,et al.  The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.

[16]  John Roe,et al.  Index theory, coarse geometry, and topology of manifolds , 1996 .

[17]  T. Isola,et al.  Spectral triples for nested fractals , 2016, 1601.08208.

[18]  J. Sauvageot,et al.  Integrals and potentials of differential 1-forms on the Sierpinski gasket , 2011, 1105.1995.

[19]  T. Isola,et al.  Singular Traces on Semifinite von Neumann Algebras , 1995 .

[20]  A. Teplyaev Spectral Analysis on Infinite Sierpiński Gaskets , 1998 .

[21]  Sums of two-dimensional spectral triples , 2006, math/0601024.

[22]  R. Strichartz ANALYSIS ON FRACTALS , 1999 .

[23]  M. Atiyah Elliptic operators, discrete groups and von Neumann algebras , 1976 .

[24]  Michel L. Lapidus,et al.  Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets , 2012, 1212.0878.

[25]  V. Berestovskii,et al.  Uniform universal covers of uniform spaces , 2007 .

[26]  M. McCord INVERSE LIMIT SEQUENCES WITH COVERING MAPS , 1965 .

[27]  Joseph C. Várilly,et al.  Elements of Noncommutative Geometry , 2000 .

[28]  John Roe,et al.  An index theorem on open manifolds. I , 1988 .

[29]  Noncommutative Riemann Integration and Novikov–Shubin Invariants for Open Manifolds , 1998, math/9802015.

[30]  Dimensions and spectral triples for fractals in R^N , 2004, math/0404295.

[31]  Daniele Guido,et al.  Dimensions and singular traces for spectral triples, with applications to fractals , 2003 .

[32]  J. Sauvageot,et al.  Spectral triples for the Sierpinski gasket , 2011, 1112.6401.

[33]  Michael F. Whittaker,et al.  Wieler solenoids, Cuntz–Pimsner algebras and $K$ -theory , 2016, Ergodic Theory and Dynamical Systems.

[34]  Guoliang Yu,et al.  Higher Index Theory , 2020 .

[35]  Spectral flow and Dixmier traces , 2002, math/0205076.

[36]  R. Strichartz Periodic and Almost Periodic Functions on Infinite Sierpinski Gaskets , 2009, Canadian Journal of Mathematics.

[37]  R. Strichartz,et al.  Covering Maps and Periodic Functions on Higher Dimensional Sierpinski Gaskets , 2009, Canadian Journal of Mathematics.

[38]  Noncommutative Solenoids and the Gromov-Hausdorff Propinquity , 2016, 1601.02707.

[39]  T. Isola,et al.  Spectral triples for noncommutative solenoidal spaces from self-coverings , 2016, 1604.08619.

[40]  J. Phillips,et al.  Unbounded Fredholm Modules and Spectral Flow , 1998, Canadian Journal of Mathematics.

[41]  M. Lapidus,et al.  Analysis on fractals, Laplacians on self-similar sets, noncommutative geometry and spectral dimensions , 1994 .

[42]  Marc A. Rieffel,et al.  Metrics on states from actions of compact groups , 1998, Documenta Mathematica.

[43]  J. Kigami,et al.  Self-Similarity of Volume Measures for Laplacians¶on P. C. F. Self-Similar Fractals , 2001 .