A Spectral Triple for a Solenoid Based on the Sierpinski Gasket
暂无分享,去创建一个
[1] A. Paterson. Contractive Spectral Triples for Crossed Products , 2012, 1204.4404.
[2] Andrea Arauza Rivera. Spectral triples for the variants of the Sierpiński gasket , 2017, Journal of Fractal Geometry.
[3] M. Lapidus,et al. Dirac operators and spectral triples for some fractal sets built on curves , 2006, math/0610222.
[4] Erik Christensen,et al. Spectral triples and the geometry of fractals , 2010, 1002.3081.
[5] On elliptic operators in , 1980 .
[6] R. Strichartz. Fractafolds based on the Sierpinski gasket and their spectra , 2003 .
[7] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[8] A C∗-algebra of geometric operators on self-similar CW-complexes. Novikov–Shubin and L2-Betti numbers , 2006, math/0607603.
[9] Martin T. Barlow,et al. Brownian motion on the Sierpinski gasket , 1988 .
[11] Volodymyr Nekrashevych,et al. Self-Similar Groups , 2005, 2304.11232.
[12] Stuart White,et al. On spectral triples on crossed products arising from equicontinuous actions , 2011, 1103.6199.
[13] Hideki Kosaki,et al. Generalized s-numbers of τ-measurable operators , 1986 .
[14] R. Strichartz. Fractals in the Large , 1998, Canadian Journal of Mathematics.
[15] John E. Roberts,et al. The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.
[16] John Roe,et al. Index theory, coarse geometry, and topology of manifolds , 1996 .
[17] T. Isola,et al. Spectral triples for nested fractals , 2016, 1601.08208.
[18] J. Sauvageot,et al. Integrals and potentials of differential 1-forms on the Sierpinski gasket , 2011, 1105.1995.
[19] T. Isola,et al. Singular Traces on Semifinite von Neumann Algebras , 1995 .
[20] A. Teplyaev. Spectral Analysis on Infinite Sierpiński Gaskets , 1998 .
[21] Sums of two-dimensional spectral triples , 2006, math/0601024.
[22] R. Strichartz. ANALYSIS ON FRACTALS , 1999 .
[23] M. Atiyah. Elliptic operators, discrete groups and von Neumann algebras , 1976 .
[24] Michel L. Lapidus,et al. Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets , 2012, 1212.0878.
[25] V. Berestovskii,et al. Uniform universal covers of uniform spaces , 2007 .
[26] M. McCord. INVERSE LIMIT SEQUENCES WITH COVERING MAPS , 1965 .
[27] Joseph C. Várilly,et al. Elements of Noncommutative Geometry , 2000 .
[28] John Roe,et al. An index theorem on open manifolds. I , 1988 .
[29] Noncommutative Riemann Integration and Novikov–Shubin Invariants for Open Manifolds , 1998, math/9802015.
[30] Dimensions and spectral triples for fractals in R^N , 2004, math/0404295.
[31] Daniele Guido,et al. Dimensions and singular traces for spectral triples, with applications to fractals , 2003 .
[32] J. Sauvageot,et al. Spectral triples for the Sierpinski gasket , 2011, 1112.6401.
[33] Michael F. Whittaker,et al. Wieler solenoids, Cuntz–Pimsner algebras and $K$ -theory , 2016, Ergodic Theory and Dynamical Systems.
[34] Guoliang Yu,et al. Higher Index Theory , 2020 .
[35] Spectral flow and Dixmier traces , 2002, math/0205076.
[36] R. Strichartz. Periodic and Almost Periodic Functions on Infinite Sierpinski Gaskets , 2009, Canadian Journal of Mathematics.
[37] R. Strichartz,et al. Covering Maps and Periodic Functions on Higher Dimensional Sierpinski Gaskets , 2009, Canadian Journal of Mathematics.
[38] Noncommutative Solenoids and the Gromov-Hausdorff Propinquity , 2016, 1601.02707.
[39] T. Isola,et al. Spectral triples for noncommutative solenoidal spaces from self-coverings , 2016, 1604.08619.
[40] J. Phillips,et al. Unbounded Fredholm Modules and Spectral Flow , 1998, Canadian Journal of Mathematics.
[41] M. Lapidus,et al. Analysis on fractals, Laplacians on self-similar sets, noncommutative geometry and spectral dimensions , 1994 .
[42] Marc A. Rieffel,et al. Metrics on states from actions of compact groups , 1998, Documenta Mathematica.
[43] J. Kigami,et al. Self-Similarity of Volume Measures for Laplacians¶on P. C. F. Self-Similar Fractals , 2001 .