Observing patchy reionization with future CMB polarization experiments

We study the signal from patchy reionization in view of the future high accuracy polarization measurements of the Cosmic Microwave Background (CMB). We implement an extraction procedure of the patchy reionization signal analogous to CMB lensing. We evaluate the signal to noise ratio (SNR) for the future Stage IV (S4) CMB experiment. The signal has a broad peak centered on the degree angular scales, with a long tail at higher multipoles. The CMB S4 experiment can effectively constrain the properties of reionization by measuring the signal on degree scales. The signal amplitude depends on the properties of the structure determining the reionization morphology. We describe bubbles having radii distributed log-normally. The expected S/N is sensitive to the mean bubble radius: $\bar{R}=5$ Mpc implies $S/N \approx 4$, $\bar{R}=10$ Mpc implies $S/N \approx 20$. The spread of the radii distribution strongly affects the integrated SNR, that changes by a factor of $10^2$ when $\sigma_{lnr}$ goes from $\ln 2$ to $\ln3$. Future CMB experiments will thus place important constraints on the physics of reionization.

[1]  Asantha Cooray,et al.  Derotation of the cosmic microwave background polarization: Full-sky formalism , 2009, 0905.1687.

[2]  M. Zaldarriaga,et al.  The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.

[3]  T. R. Choudhury,et al.  An improved model of H ii bubbles during the epoch of reionization , 2014, 1401.7994.

[4]  Adrian T. Lee,et al.  EBEX: a balloon-borne CMB polarization experiment , 2010, Astronomical Telescopes + Instrumentation.

[5]  H. Trac,et al.  REIONIZATION ON LARGE SCALES. III. PREDICTIONS FOR LOW-ℓ COSMIC MICROWAVE BACKGROUND POLARIZATION AND HIGH-ℓ KINETIC SUNYAEV–ZEL'DOVICH OBSERVABLES , 2012, 1211.2832.

[6]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[7]  L. Danese,et al.  GALAXY EVOLUTION AT HIGH REDSHIFT: OBSCURED STAR FORMATION, GRB RATES, COSMIC REIONIZATION, AND MISSING SATELLITES , 2016, 1612.01304.

[8]  Wayne Hu,et al.  Mass Reconstruction with CMB Polarization , 2001 .

[9]  Takashi Hattori,et al.  Probing intergalactic neutral hydrogen by the Lyman alpha red damping wing of gamma-ray burst 130606A afterglow spectrum at z = 5.913 , 2013, 1312.3934.

[10]  M. Mortonson,et al.  The Maximum B-Mode Polarization of the Cosmic Microwave Background from Inhomogeneous Reionization , 2006, astro-ph/0607652.

[11]  A. Lewis Cosmological parameters from WMAP 5-year temperature maps , 2008, 0804.3865.

[12]  J. J. Bock,et al.  BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization , 2014, Astronomical Telescopes and Instrumentation.

[13]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[14]  Reionization of the Intergalactic Medium , 2014, 1409.4946.

[15]  T. Namikawa Constraints on patchy reionization from Planck CMB temperature trispectrum , 2017, 1711.00058.

[16]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[17]  M. Milosavljevic,et al.  THE FIRST GALAXIES: ASSEMBLY UNDER RADIATIVE FEEDBACK FROM THE FIRST STARS , 2012, 1208.3698.

[18]  F. Fontanot,et al.  Star Formation in Herschel's Monsters versus Semi-Analytic Models , 2015, 1506.01518.

[19]  Cora Dvorkin,et al.  B-mode CMB polarization from patchy screening during reionization , 2009 .

[20]  G. Zotti,et al.  Another look at distortions of the Cosmic Microwave Background spectrum , 2016 .

[21]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[22]  J. Bolton,et al.  Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines , 2015, Publications of the Astronomical Society of Australia.

[23]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[24]  O. Fèvre,et al.  The VLA-COSMOS 3 GHz Large Project: Cosmic star formation history since z ~ 5 , 2017, 1703.09724.

[25]  S. Finkelstein,et al.  Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.

[26]  Ipac,et al.  ULTRA-FAINT ULTRAVIOLET GALAXIES AT z ∼ 2 BEHIND THE LENSING CLUSTER A1689: THE LUMINOSITY FUNCTION, DUST EXTINCTION, AND STAR FORMATION RATE DENSITY , 2013, 1305.2413.

[27]  Astrophysics,et al.  THE EVOLUTION OF THE FAINT END OF THE UV LUMINOSITY FUNCTION DURING THE PEAK EPOCH OF STAR FORMATION , 2016, 1606.00469.

[28]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: THE INFRARED EXCESS OF UV-SELECTED z = 2–10 GALAXIES AS A FUNCTION OF UV-CONTINUUM SLOPE AND STELLAR MASS , 2016, 1606.05280.

[29]  P. P. van der Werf,et al.  HERSCHEL-ATLAS GALAXY COUNTS AND HIGH-REDSHIFT LUMINOSITY FUNCTIONS: THE FORMATION OF MASSIVE EARLY-TYPE GALAXIES , 2011, 1108.3911.

[30]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[31]  S. Furlanetto,et al.  Have We Detected Patchy Reionization in Quasar Spectra? , 2005, astro-ph/0512427.

[32]  Cora Dvorkin,et al.  Reconstructing patchy reionization from the cosmic microwave background , 2008, 0812.1566.

[33]  Is Double Reionization Physically Plausible , 2004, astro-ph/0409656.

[34]  J. Bullock,et al.  The high-z universe confronts warm dark matter: Galaxy counts, reionization and the nature of dark matter , 2014, 1401.3769.

[35]  E. M. Leitch,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR , 2014, 1403.2369.

[36]  The Role of the Dust in Primeval Galaxies: A Simple Physical Model for Lyman Break Galaxies and Lyα Emitters , 2006, astro-ph/0611799.

[37]  J. Bond,et al.  kSZ from patchy reionization: The view from the simulations , 2006 .

[38]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[39]  Baojiu Li,et al.  Weak lensing by galaxy troughs with modified gravity , 2016, 1605.08436.

[40]  Taxing the rich: Recombinations and bubble growth during reionization , 2005, astro-ph/0505065.

[41]  Simone Ferraro,et al.  Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background. , 2015, Physical review letters.

[42]  Simone Ferraro,et al.  Detecting Patchy Reionization in the Cosmic Microwave Background. , 2017, Physical review letters.

[43]  H. Trac,et al.  REIONIZATION ON LARGE SCALES. II. DETECTING PATCHY REIONIZATION THROUGH CROSS-CORRELATION OF THE COSMIC MICROWAVE BACKGROUND , 2012, 1211.2822.

[44]  V. Wild,et al.  The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.

[45]  S. Oguri,et al.  Mission Design of LiteBIRD , 2013, 1311.2847.

[46]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[47]  D. Clements,et al.  The star formation rate density from z = 1 to 6 , 2016, 1605.03937.

[48]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[49]  A. Gilbert,et al.  The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.

[50]  Wayne Hu Reionization Revisited: Secondary Cosmic Microwave Background Anisotropies and Polarization , 1999, astro-ph/9907103.

[51]  R. Sunyaev,et al.  Unavoidable CMB spectral features and blackbody photosphere of our universe , 2013, 1302.6553.

[52]  R. Ellis,et al.  Early star-forming galaxies and the reionization of the Universe , 2010, Nature.

[53]  E. Berger,et al.  GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG , 2013, 1306.3949.

[54]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[55]  Anthony Challinor,et al.  The shape of the CMB lensing bispectrum , 2011, 1101.2234.

[56]  A. Cimatti,et al.  The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4 , 2013, 1302.5209.

[57]  Wayne Hu,et al.  Redshift Space 21 cm Power Spectra from Reionization , 2005, astro-ph/0511141.