Conformal invariance of planar loop-erased random walks and uniform spanning trees

This paper proves that the scaling limit of a loop-erased random walk in a simply connected domain \(D\mathop \subset \limits_ \ne \mathbb{C} \) is equal to the radial SLE2 path. In particular, the limit exists and is conformally invariant. It follows that the scaling limit of the uniform spanning tree in a Jordan domain exists and is conformally invarint. Assuming that ∂D is a C 1-simple closed curve, the same method is applied to show that the scaling limit of the uniform spanning tree Peano curve, where the tree is wired along a proper are A ⊂ ∂ D, is the chordal SLE8 path in \(\overline D \) joining the endpoints of A. A by-product of this result is that SLE8 is almost surely generated by a continuous path. The result and proofs are not restricted to particular choice of Iattice.

[1]  G. Lawler A self-avoiding random walk , 1980 .

[2]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[3]  R. Pemantle Choosing a Spanning Tree for the Integer Lattice Uniformly , 1991, math/0404043.

[4]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[5]  I. Benjamini,et al.  Random walks and harmonic functions on infinite planar graphs using square tilings , 1996 .

[6]  Stanislav Smirnov,et al.  Critical percolation in the plane : I. Conformal invariance and Cardy's formula. II. Continuum scaling limit , 2001 .

[7]  Olle Häggström,et al.  Random-cluster measures and uniform spanning trees , 1995 .

[8]  David Bruce Wilson,et al.  Scaling limits for minimal and random spanning trees in two dimensions , 1999, Random Struct. Algorithms.

[9]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.

[10]  P. W. Kasteleyn A soluble self-avoiding walk problem*) , 1963 .

[11]  Oded Schramm,et al.  Basic properties of SLE , 2001 .

[12]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[13]  L. Collatz The numerical treatment of differential equations , 1961 .

[14]  Richard Kenyon,et al.  Conformal invariance of domino tiling , 1999 .

[15]  Anthony J. Guttmann,et al.  Critical exponent for the loop erased self-avoiding walk by Monte Carlo methods , 1990 .

[16]  M. Dehn Über Zerlegung von Rechtecken in Rechtecke , 1903 .

[17]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[18]  Wendelin Werner,et al.  One-Arm Exponent for Critical 2D Percolation , 2001 .

[19]  Richard Kenyon,et al.  The asymptotic determinant of the discrete Laplacian , 2000, math-ph/0011042.

[20]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[21]  Oded Schramm,et al.  TheC∞-convergence of hexagonal disk packings to the Riemann map , 1998 .

[22]  Gregory F. Lawler Loop-Erased Random Walk , 1999 .

[23]  Sergey Fomin,et al.  Loop-erased walks and total positivity , 2000, math/0004083.

[24]  L. Dubins On a Theorem of Skorohod , 1968 .

[25]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[26]  Oded Schramm A Percolation Formula , 2001 .

[27]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[28]  R. Kenyon Long-range properties of spanning trees , 2000 .

[29]  Russell Lyons,et al.  A bird's-eye view of uniform spanning trees and forests , 1997, Microsurveys in Discrete Probability.

[30]  H. E. Salzer,et al.  Table errata: The numerical treatment of differential equations (third edition, Springer, Berlin, 1960) by L. Collatz , 1972 .

[31]  John Cardy Critical percolation in finite geometries , 1992 .

[32]  B. Duplantier Loop-erased self-avoiding walks in two dimensions: exact critical exponents and winding numbers , 1992 .

[33]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[34]  Majumdar Exact fractal dimension of the loop-erased self-avoiding walk in two dimensions. , 1992, Physical review letters.

[35]  Volker Strassen,et al.  Almost sure behavior of sums of independent random variables and martingales , 1967 .

[37]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[38]  K. Uchiyama,et al.  Potential kernel for two-dimensional random walk , 1996 .

[39]  O. Schramm,et al.  Conformal restriction: The chordal case , 2002, math/0209343.

[40]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[41]  Richard Kenyon Tilings and discrete Dirichlet problems , 1998 .

[42]  B. Duplantier Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts andO(n) models , 1987 .

[43]  Analyticity of intersection exponents for planar Brownian motion , 2000, math/0005295.