Computational Models of Vascularization and Therapy in Tumor Growth

[1]  M. Chaplain,et al.  Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. , 2011, Cancer research.

[2]  Marco Scianna,et al.  A Multiscale Hybrid Model for Pro-angiogenic Calcium Signals in a Vascular Endothelial Cell , 2011, Bulletin of Mathematical Biology.

[3]  L. Preziosi,et al.  A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. , 2011, Progress in Biophysics and Molecular Biology.

[4]  Benoît You,et al.  A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers. , 2011, European journal of cancer.

[5]  G. Demetri,et al.  Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis , 2010, Cancer Chemotherapy and Pharmacology.

[6]  K Hendrickson,et al.  Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach , 2010, Physics in medicine and biology.

[7]  Alberto Gandolfi,et al.  Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular "pruning". , 2010, Journal of theoretical biology.

[8]  T. Cloughesy,et al.  Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. , 2009, Cancer research.

[9]  H. Schättler,et al.  On optimal delivery of combination therapy for tumors. , 2009, Mathematical biosciences.

[10]  Didier Bresch,et al.  A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. , 2009, Journal of theoretical biology.

[11]  Jan Fagerberg,et al.  Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  B P Booth,et al.  Elucidation of Relationship Between Tumor Size and Survival in Non‐Small‐Cell Lung Cancer Patients Can Aid Early Decision Making in Clinical Drug Development , 2009, Clinical pharmacology and therapeutics.

[13]  A. Gandolfi,et al.  The dynamics of tumour–vasculature interaction suggests low‐dose, time‐dense anti‐angiogenic schedulings , 2009, Cell proliferation.

[14]  M. Wick,et al.  Efficacy of weekly docetaxel and bevacizumab in mesenchymal chondrosarcoma: A new theranostic method combining xenografted biopsies with a mathematical model (Cancer Research (November 1, 2008) 68 (9033-9040)) , 2008 .

[15]  A. d’Onofrio,et al.  A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. , 2008, Mathematical medicine and biology : a journal of the IMA.

[16]  M. Wick,et al.  Efficacy of weekly docetaxel and bevacizumab in mesenchymal chondrosarcoma: a new theranostic method combining xenografted biopsies with a mathematical model. , 2008, Cancer research.

[17]  Nicholas H G Holford,et al.  A Pharmacodynamic Model for the Time Course of Tumor Shrinkage by Gemcitabine + Carboplatin in Non–Small Cell Lung Cancer Patients , 2008, Clinical Cancer Research.

[18]  B. Bussolati,et al.  Arachidonic Acid–Induced Ca2+ Entry Is Involved in Early Steps of Tumor Angiogenesis , 2008, Molecular Cancer Research.

[19]  Luc Taillandier,et al.  Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm , 2008, Neurosurgical Review.

[20]  Karen M Page,et al.  Mathematical models of the VEGF receptor and its role in cancer therapy , 2007, Journal of The Royal Society Interface.

[21]  J. Huot,et al.  Endothelial cell migration during angiogenesis. , 2007, Circulation research.

[22]  Kristin R. Swanson,et al.  The Evolution of Mathematical Modeling of Glioma Proliferation and Invasion , 2007, Journal of neuropathology and experimental neurology.

[23]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[24]  M. Shibuya Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. , 2006, Journal of biochemistry and molecular biology.

[25]  L. Preziosi,et al.  Mechanics and Chemotaxis in the Morphogenesis of Vascular Networks , 2006, Bulletin of mathematical biology.

[26]  J. Pouysségur,et al.  Hypoxia signalling in cancer and approaches to enforce tumour regression , 2006, Nature.

[27]  L. Claesson‐Welsh,et al.  VEGF receptor signalling ? in control of vascular function , 2006, Nature Reviews Molecular Cell Biology.

[28]  Laurent Capelle,et al.  Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns , 2006, Journal of Neuro-Oncology.

[29]  K. Ballmer-Hofer,et al.  The role of VEGF receptors in angiogenesis; complex partnerships , 2006, Cellular and Molecular Life Sciences.

[30]  Vladimir Mironov,et al.  On the role of endothelial progenitor cells in tumor neovascularization. , 2005, Journal of theoretical biology.

[31]  Alberto Gandolfi,et al.  Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). , 2004, Mathematical biosciences.

[32]  L. Munaron,et al.  Intracellular calcium signals and control of cell proliferation: how many mechanisms? , 2004, Journal of cellular and molecular medicine.

[33]  G. De Nicolao,et al.  Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents , 2004, Cancer Research.

[34]  J. Murray,et al.  Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion , 2003, Journal of the Neurological Sciences.

[35]  L. Claesson‐Welsh,et al.  VEGF receptor signal transduction. , 2003, Science's STKE : signal transduction knowledge environment.

[36]  S. Kimura,et al.  A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. , 2003, The Biochemical journal.

[37]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[38]  Barbara L. Smith,et al.  Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[39]  L. Preziosi,et al.  Modeling the early stages of vascular network assembly , 2003, The EMBO journal.

[40]  Laurent Capelle,et al.  Continuous growth of mean tumor diameter in a subset of grade II gliomas , 2003, Annals of neurology.

[41]  L Preziosi,et al.  Percolation, morphogenesis, and burgers dynamics in blood vessels formation. , 2003, Physical review letters.

[42]  Mats O Karlsson,et al.  Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  L. Munaron Calcium signalling and control of cell proliferation by tyrosine kinase receptors (review). , 2002, International journal of molecular medicine.

[44]  Napoleone Ferrara,et al.  VEGF and the quest for tumour angiogenesis factors , 2002, Nature Reviews Cancer.

[45]  C. Sawyers,et al.  The phosphatidylinositol 3-Kinase–AKT pathway in human cancer , 2002, Nature Reviews Cancer.

[46]  J. Murray,et al.  Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy , 2002, British Journal of Cancer.

[47]  A. Fiorio Pla,et al.  Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells , 2000, Journal of cellular physiology.

[48]  P. Carmeliet Mechanisms of angiogenesis and arteriogenesis , 2000, Nature Medicine.

[49]  M. van Glabbeke,et al.  New guidelines to evaluate the response to treatment in solid tumors , 2000, Journal of the National Cancer Institute.

[50]  P. Hahnfeldt,et al.  Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. , 1999, Cancer research.

[51]  J. Peng,et al.  Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. , 1999, Development.

[52]  Thomas N. Sato,et al.  Increased vascularization in mice overexpressing angiopoietin-1. , 1998, Science.

[53]  M. Chaplain,et al.  Continuous and discrete mathematical models of tumor-induced angiogenesis , 1998, Bulletin of mathematical biology.

[54]  V. Dixit,et al.  Vascular Endothelial Growth Factor Induces Expression of the Antiapoptotic Proteins Bcl-2 and A1 in Vascular Endothelial Cells* , 1998, The Journal of Biological Chemistry.

[55]  Thomas N. Sato,et al.  Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. , 1997, Science.

[56]  J. Murray,et al.  A mathematical model of glioma growth: the effect of chemotherapy on spatio‐temporal growth , 1995, Cell proliferation.

[57]  L. Norton A Gompertzian model of human breast cancer growth. , 1988, Cancer research.

[58]  G. Oster,et al.  Mechanical aspects of mesenchymal morphogenesis. , 1983, Journal of embryology and experimental morphology.

[59]  Albert K. Harris,et al.  Fibroblast traction as a mechanism for collagen morphogenesis , 1981, Nature.

[60]  Judah Folkman,et al.  Angiogenesis in vitro , 1980, Nature.

[61]  L. Norton,et al.  Predicting the course of Gompertzian growth , 1976, Nature.

[62]  S. Salmon,et al.  Kinetics of tumor growth and regression in IgG multiple myeloma. , 1972, The Journal of clinical investigation.

[63]  H. H. Lloyd,et al.  Kinetic parameters and growth curves for experimental tumor systems. , 1970, Cancer chemotherapy reports.

[64]  A. K. Laird Dynamics of Tumour Growth , 1964, British Journal of Cancer.

[65]  Luc Taillandier,et al.  Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping. , 2007, Neuro-oncology.

[66]  L. Munaron Intracellular calcium, endothelial cells and angiogenesis. , 2006, Recent patents on anti-cancer drug discovery.

[67]  Z. Agur,et al.  Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids. , 2005, European journal of cancer.

[68]  Z. Agur,et al.  A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth , 2004, Angiogenesis.

[69]  H. Esumi,et al.  Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. , 2003, Acta biochimica Polonica.

[70]  G. Oster,et al.  Cell traction models for generating pattern and form in morphogenesis , 1984, Journal of mathematical biology.

[71]  G F Oster,et al.  A mechanical model for mesenchymal morphogenesis , 1983, Journal of mathematical biology.

[72]  A. Miller,et al.  Reporting results of cancer treatment , 1981, Cancer.

[73]  L. Munaron,et al.  ©2005 FASEB The FASEB Journal express article 10.1096/fj.05-4110fje. Published online October 4, 2005. Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells , 2022 .

[74]  T. Deisboeck,et al.  Theoretical Biology and Medical Modelling , 2022 .