COMPUTER AIDED GEOMETRIC DESIGN
暂无分享,去创建一个
[1] E. Catmull,et al. A CLASS OF LOCAL INTERPOLATING SPLINES , 1974 .
[2] T. Sakkalis,et al. Pythagorean hodographs , 1990 .
[3] Tomoyuki Nishita,et al. Curve intersection using Bézier clipping , 1990, Comput. Aided Des..
[4] T. Sederberg. Algorithm for algebraic curve intersection , 1989 .
[5] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[6] Thomas W. Sederberg,et al. Fat arcs: A bounding region with cubic convergence , 1989, Comput. Aided Geom. Des..
[7] Lyle Ramshaw,et al. Béziers and B-splines as Multiaffine Maps , 1988 .
[8] Michael S. Floater,et al. Derivatives of rational Bézier curves , 1992, Comput. Aided Geom. Des..
[9] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[10] P. Revesz. Interpolation and Approximation , 2010 .
[11] Michael A. Lachance,et al. Chebyshev economization for parametric surfaces , 1988, Comput. Aided Geom. Des..
[12] H. Timmer,et al. Alternative representation for parametric cubic curves and surfaces , 1980 .
[13] J. G. Semple,et al. Algebraic Projective Geometry , 1953 .
[14] Xuguang Wang,et al. Rational hodographs , 1987, Comput. Aided Geom. Des..
[15] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[16] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[17] I. Faux,et al. Computational Geometry for Design and Manufacture , 1979 .
[18] Jon G. Rokne. Reducing the degree of an interval polynomial , 2005, Computing.
[19] Ron Goldman,et al. Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves , 1984, Comput. Aided Geom. Des..
[20] Dana H. Ballard,et al. Strip trees: a hierarchical representation for curves , 1981, CACM.
[21] S. Mudur,et al. A new class of algorithms for the processing of parametric curves , 1983 .
[22] Rida T. Farouki,et al. Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..
[23] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[24] N. Bose. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .
[25] Tomoyuki Nishita,et al. Ray tracing trimmed rational surface patches , 1990, SIGGRAPH.
[26] W. Mccrea. Analytical Geometry of Three Dimensions , 1943, Nature.
[27] W. Böhm,et al. Generating the Bézier points of B-spline curves and surfaces , 1981 .
[28] A. W. Overhauser,et al. Analytic Definition of Curves and Surfaces by Parabolic Blending , 2005, ArXiv.
[29] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[30] Eldon Hansen,et al. A globally convergent interval method for computing and bounding real roots , 1978 .
[31] Fujio Yamaguchi,et al. Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.
[32] M. Sabin. Envelope curves and surfaces , 1987 .
[33] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[34] Nicholas M. PATRIKALAKIS. Approximate conversion of rational splines , 1989, Comput. Aided Geom. Des..
[35] Thomas W. Sederberg,et al. Curve implicitization using moving lines , 1994, Comput. Aided Geom. Des..
[36] Horst Nowacki,et al. Fairing Bézier curves with constraints , 1990, Comput. Aided Geom. Des..
[37] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[38] Melvin R. Spencer. Polynomial real root finding in Bernstein form , 1994 .
[39] Thomas W. Sederberg,et al. Free-form deformation of solid geometric models , 1986, SIGGRAPH.
[40] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[41] Rida T. Farouki,et al. On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..
[42] Ralf Fröberg,et al. An introduction to Gröbner bases , 1997, Pure and applied mathematics.
[43] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[44] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[45] Sudhir P. Mudur,et al. Interval Methods for Processing Geometric Objects , 1984, IEEE Computer Graphics and Applications.
[46] T. Sederberg,et al. Improved test for closed loops in surface intersections , 1989 .
[47] Matthias Eck,et al. Degree reduction of Bézier curves , 1993, Comput. Aided Geom. Des..
[48] Josef Hoschek. Approximate conversion of spline curves , 1987, Comput. Aided Geom. Des..
[49] A. Z.. An Introduction to Projective Geometry , 1938, Nature.
[50] Knut Mørken,et al. Knot removal for parametric B-spline curves and surfaces , 1987, Comput. Aided Geom. Des..
[51] Ron Goldman,et al. Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..
[52] P. Bézier. MATHEMATICAL AND PRACTICAL POSSIBILITIES OF UNISURF , 1974 .