A High-Linearity Digital-to-Time Converter Technique: Constant-Slope Charging

A digital-to-time converter (DTC) controls time delay by a digital code, which is useful, for example, in a sampling oscilloscope, fractional-N PLL, or time-interleaved ADC. This paper proposes constant-slope charging as a method to realize a DTC with intrinsically better integral non-linearity (INL) compared to the popular variable-slope method. The proposed DTC chip realized in 65 nm CMOS consists of a voltage-controlled variable-delay element (DTC-core) driven by a 10 bit digital-to-analog converter. Measurements with a 55 MHz crystal clock demonstrate a full-scale delay programmable from 19 ps to 189 ps with a resolution from 19 fs to 185 fs. As available oscilloscopes are not good enough to reliably measure such high timing resolution, a frequency-domain method has been developed that modulates a DTC edge and derives INL from spur strength. An INL of 0.17% at 189 ps full-scale delay and 0.34% at 19 ps are measured, representing 8-9 bit effective INL-limited resolution. Output rms jitter is better than 210 fs limited by the test setup, while the DTC consumes 1.8 mW.

[1]  Sang-Sun Yoo,et al.  A fully digital polar transmitter using a digital-to-time converter for high data rate system , 2009, 2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[2]  Jan Craninckx,et al.  A 10-bit, 550-fs step Digital-to-Time Converter in 28nm CMOS , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[3]  Gaetano Palumbo,et al.  Propagation Delay of an RC-Chain With a Ramp Input , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Bram Nauta,et al.  A 2.2GHz sub-sampling PLL with 0.16psrms jitter and −125dBc/Hz in-band phase noise at 700µW loop-components power , 2010, 2010 Symposium on VLSI Circuits.

[5]  Nenad Pavlovic,et al.  A 5.3GHz digital-to-time-converter-based fractional-N all-digital PLL , 2011, 2011 IEEE International Solid-State Circuits Conference.

[6]  Eric A. M. Klumperink,et al.  A Sensitive Method to Measure the Integral Nonlinearity of a Digital-to-Time Converter Based on Phase Modulation , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Robert B. Staszewski,et al.  Spur-free all-digital PLL in 65nm for mobile phones , 2011, 2011 IEEE International Solid-State Circuits Conference.

[8]  Eric A. M. Klumperink,et al.  A 1-to-2.5GHz phased-array IC based on gm-RC all-pass time-delay cells , 2012, 2012 IEEE International Solid-State Circuits Conference.

[9]  Maik Moeller,et al.  Cmos Integrated Analog To Digital And Digital To Analog Converters , 2016 .

[10]  D. Auvergne,et al.  A comprehensive delay macro modeling for submicrometer CMOS logics , 1999, IEEE J. Solid State Circuits.

[11]  Salvatore Levantino,et al.  A Wideband 3.6 GHz Digital ΔΣ Fractional-N PLL With Phase Interpolation Divider and Digital Spur Cancellation , 2011, IEEE Journal of Solid-State Circuits.

[12]  T. Okayasu,et al.  1.83ps-Resolution CMOS Dynamic Arbitrary Timing Generator for >4GHz ATE Applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[13]  Giovanni Marzin,et al.  A 2.9-to-4.0GHz fractional-N digital PLL with bang-bang phase detector and 560fsrms integrated jitter at 4.5mW power , 2011, 2011 IEEE International Solid-State Circuits Conference.

[14]  J. Kostamovaara,et al.  A 12-bit digital-to-time converter (DTC) with sub-ps-level resolution using current DAC and differential switch for time-to-digital converter (TDC) , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[15]  A. Hajimiri,et al.  An active analog delay and the delay reference loop , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[16]  P. K. Chaturvedi,et al.  Communication Systems , 2002, IFIP — The International Federation for Information Processing.

[17]  Rudy Van De Plassche Integrated analog-to-digital and digital-to-analog converters / Rudy Van De Plassche , 1994 .

[18]  Robert M. R. Neff,et al.  A 4 Gsample/s 8b ADC in 0.35 μm CMOS , 2002 .

[19]  Giovanni Marzin,et al.  An Adaptive Pre-Distortion Technique to Mitigate the DTC Nonlinearity in Digital PLLs , 2014, IEEE Journal of Solid-State Circuits.

[20]  Thomas H. Lee,et al.  A 2.5 V CMOS delay-locked loop for 18 Mbit, 500 megabyte/s DRAM , 1994, IEEE J. Solid State Circuits.

[21]  B. Stengel,et al.  Controlled dither in 90 nm digital to time conversion based direct digital synthesizer for spur mitigation , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[22]  K. Inagaki,et al.  A 1-ps Resolution On-Chip Sampling Oscilloscope with 64:1 Tunable Sampling Range Based on Ramp Waveform Division Scheme , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[23]  Stephan Henzler,et al.  A Local Passive Time Interpolation Concept for Variation-Tolerant High-Resolution Time-to-Digital Conversion , 2008, IEEE Journal of Solid-State Circuits.

[24]  Gordon W. Roberts,et al.  70-GHz Effective Sampling Time-Base On-Chip Oscilloscope in CMOS , 2007, IEEE Journal of Solid-State Circuits.

[25]  H. Hashemi,et al.  A 0.13μm CMOS 4-channel UWB timed array transmitter chipset with sub-200ps switches and all-digital timing circuitry , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[26]  R. J. van de Plassche,et al.  An 8-b 650-MHz folding ADC , 1992 .

[27]  Domenico Zito,et al.  A 90nm CMOS SoC UWB pulse radar for respiratory rate monitoring , 2011, 2011 IEEE International Solid-State Circuits Conference.

[28]  E. Klumperink,et al.  AM suppression with low AM-PM conversion with the aid of a variable-gain amplifier , 1996 .

[29]  Eric A. M. Klumperink,et al.  A 2.2GHz 7.6mW sub-sampling PLL with −126dBc/Hz in-band phase noise and 0.15psrms jitter in 0.18µm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[30]  Stefanos Sidiropoulos,et al.  A semidigital dual delay-locked loop , 1997 .