Hierarchical BOA Solves Ising Spin Glasses and MAXSAT
暂无分享,去创建一个
[1] G. Rinaldi,et al. Exact ground states of two-dimensional ±J Ising spin glasses , 1996 .
[2] Lawrence K. Saul,et al. The 2D±J Ising spin glass: exact partition functions in polynomial time , 1994 .
[3] Martin Loebl,et al. On the Theory of Pfaffian Orientations. II. T-joins, k-cuts, and Duality of Enumeration , 1998, Electron. J. Comb..
[4] David E. Goldberg,et al. The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .
[5] Herbert A. Simon,et al. The Sciences of the Artificial , 1970 .
[6] Elena Marchiori,et al. Evolutionary Algorithms for the Satisfiability Problem , 2002, Evolutionary Computation.
[7] David E. Goldberg. Design of Competent Genetic Algorithms , 2002 .
[8] C. V. Hoyweghen. Detecting spin-flip symmetry in optimization problems , 2001 .
[9] Toby Walsh,et al. Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.
[10] Hector J. Levesque,et al. A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.
[11] Jan Naudts,et al. The Effect of Spin-Flip Symmetry on the Performance of the Simple GA , 1998, PPSN.
[12] Heinz Mühlenbein,et al. Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.
[13] F. Barahona. On the computational complexity of Ising spin glass models , 1982 .
[14] David E. Goldberg,et al. Bayesian optimization algorithm, decision graphs, and Occam's razor , 2001 .
[15] M. Pelikán,et al. The Bivariate Marginal Distribution Algorithm , 1999 .
[16] Martin Pelikan,et al. Parameter-less Genetic Algorithm: A Worst-case Time and Space Complexity Analysis , 2000, GECCO.
[17] Chu Min Li,et al. Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.
[18] L. Darrell Whitley,et al. Genetic Algorithm Behavior in the MAXSAT Domain , 1998, PPSN.
[19] Peter C. Cheeseman,et al. Where the Really Hard Problems Are , 1991, IJCAI.
[20] David E. Goldberg,et al. Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .
[21] D. Goldberg,et al. Escaping hierarchical traps with competent genetic algorithms , 2001 .
[22] P. Bosman,et al. Continuous iterated density estimation evolutionary algorithms within the IDEA framework , 2000 .
[23] David E. Goldberg,et al. A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..
[24] David E. Goldberg,et al. Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.
[25] L. Kallel,et al. Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.
[26] Martin Loebl,et al. On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents , 1998, Electron. J. Comb..
[27] Rajkumar Roy,et al. Advances in Soft Computing: Engineering Design and Manufacturing , 1998 .
[28] H. Mühlenbein,et al. From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.
[29] Fernando G. Lobo,et al. A parameter-less genetic algorithm , 1999, GECCO.
[30] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[31] Ivan Hal Sudborough,et al. Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.