Hierarchical BOA Solves Ising Spin Glasses and MAXSAT

Theoretical and empirical evidence exists that the hierarchical Bayesian optimization algorithm (hBOA) can solve challenging hierarchical problems and anything easier. This paper applies hBOA to two important classes of real-world problems: Ising spin-glass systems and maximum satisfiability (MAXSAT). The paper shows how easy it is to apply hBOA to real-world optimization problems--in most cases hBOA can be applied without any prior problem analysis, it can acquire enough problem-specific knowledge automatically. The results indicate that hBOA is capable of solving enormously difficult problems that cannot be solved by other optimizers and still provide competitive or better performance than problem-specific approaches on other problems. The results thus confirm that hBOA is a practical, robust, and scalable technique for solving challenging real-world problems.

[1]  G. Rinaldi,et al.  Exact ground states of two-dimensional ±J Ising spin glasses , 1996 .

[2]  Lawrence K. Saul,et al.  The 2D±J Ising spin glass: exact partition functions in polynomial time , 1994 .

[3]  Martin Loebl,et al.  On the Theory of Pfaffian Orientations. II. T-joins, k-cuts, and Duality of Enumeration , 1998, Electron. J. Comb..

[4]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[5]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[6]  Elena Marchiori,et al.  Evolutionary Algorithms for the Satisfiability Problem , 2002, Evolutionary Computation.

[7]  David E. Goldberg Design of Competent Genetic Algorithms , 2002 .

[8]  C. V. Hoyweghen Detecting spin-flip symmetry in optimization problems , 2001 .

[9]  Toby Walsh,et al.  Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.

[10]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[11]  Jan Naudts,et al.  The Effect of Spin-Flip Symmetry on the Performance of the Simple GA , 1998, PPSN.

[12]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[13]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[14]  David E. Goldberg,et al.  Bayesian optimization algorithm, decision graphs, and Occam's razor , 2001 .

[15]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[16]  Martin Pelikan,et al.  Parameter-less Genetic Algorithm: A Worst-case Time and Space Complexity Analysis , 2000, GECCO.

[17]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[18]  L. Darrell Whitley,et al.  Genetic Algorithm Behavior in the MAXSAT Domain , 1998, PPSN.

[19]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[20]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .

[21]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[22]  P. Bosman,et al.  Continuous iterated density estimation evolutionary algorithms within the IDEA framework , 2000 .

[23]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[24]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[25]  L. Kallel,et al.  Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.

[26]  Martin Loebl,et al.  On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents , 1998, Electron. J. Comb..

[27]  Rajkumar Roy,et al.  Advances in Soft Computing: Engineering Design and Manufacturing , 1998 .

[28]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[29]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[30]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[31]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.