Multi-phase generalization of the particle swarm optimization algorithm

Multi-phase particle swarm optimization is a new algorithm to be used for discrete and continuous problems. In this algorithm, different groups of particles have trajectories that proceed with differing goals in different phases of the algorithm. On several benchmark problems, the algorithm outperforms standard particle swarm optimization, genetic algorithm, and evolution programming.

[1]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[2]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[3]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[4]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[5]  F. van den Bergh,et al.  Training product unit networks using cooperative particle swarm optimisers , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[6]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[7]  Chilukuri K. Mohan,et al.  Multi-phase Discrete Particle Swarm Optimization , 2002, JCIS.